Java Instrumentation Engine version 1.01
IMPLEMENTATION AND USAGE NOTES

Eran Tromer <eran@tromer.org>

for Shmuel Ur, IBM Haifa Research Lab

as part of Course 236705

Technion, Israel Institute of Technology

1999/11/18

This document provides an overview of the implementation of Java Instrumentation Engine version 1.0. It notes the capabilities of this version, documents its usage and provides various details that may be of interest during use or extension.

This document, as well as JIE itself, is based on “Java Instrumentation Engine: Revised Design Document". Familiarity with the concepts and terminology presented in that document is assumed. In case of discrepancy, this document takes precedence.
1 Package Content

The JIE v1.0 package contains the following:

JIE.jar
Compiled JAR file (requires lib/*)

lib/*
External libraries used by JIE.jar

org/tromer/jie/*
JIE sourcecode

JavaDoc/*
JavaDoc documentation of JIE sourcecode

doc/*
Various documents

autogen/*
Programs and data for creating the machine-generated parts of JIE

test/*
Test data

Each directory contains an informative README.txt file.

Additional details are provided below.

2 Capabilities

JIE v1.0 has the following capabilities:

 Full support for Java syntax, including JDK 1.2 extensions and undocumented features supported by javac.

 Reading of XML-based configuration files using a specialized XML data type

 Instrumentation opportunities:

 Method (Entry/Exit)

 Nominal Method (Entry/Exit)

 Class (Entry/Exit)

 Class Instantiation

 Nominal Basic Block

 Logging: produces lists of basic blocks, methods, classes, etc.

 Generic static filters, both global and per-rule:

 Package

 Class

 Method

 Generic context parameters

 Command-line based activation

All features scheduled for phase 1 of JIE are fully implemented, as well as three additional features (logging, context parameters and XML configuration).

Usage

Command line:

jie configfile
or

jie configfile input output [-relative]
Where jie is the command used to run JIE. For instance, using JDK 1.2:

java –jar JIE.jar other-parameters

or, using Kaffe 1.04b:

kaffe -addclasspath lib/xml4j.jar -jar JIE.jar other-parameters
The configuration file is an XML file containing an instrumentation configuration using the JIE XML data type (see below).

Input and output paths may be specified in the configuration file, in the command line, or both. If they are specified in both, the command line takes precedence.

The -relative switch means input and output paths are relative to the configuration file, instead of the current directory. Note that this is always the case for paths that appear in the configuration file.

If the input path is a file, JIE will create an instrumented copy of that file and name it according to the output path. If the input file is a directory, JIE will recursively traverse this directory. The output path will then be a directory (newly created, if needed) containing instrumented versions of all the .java files found in the input directory. Existing files in the output directory will not be deleted. The input path may not be a subdirectory of the output path, or vice versa.

All input files must be valid Java 1.2 sourcecode.

If logging is used (see below), additional files will be created for each instrumented source files. These files will be of the form source.opportunity.log. For instance., the list of basic blocks found in moose.java will be called moose.java.NominalBasicBlock.log, in the same (output) directory.

Note that JIE.jar uses lib/xml4j.jar (see below).. This is reflected in the manifest file of JIE.jar, so JDK 1.2 handles the dependency automatically, but other JVMs require explicit -classpath or -addclasspath arguments. Also, if you copy JIE.jar you’ll need to copy xml4j.jar along with it, and consider consulting the IBM XML Parser for Java license agreement.

Here is a transcript of a successful JIE run:

% java –jar JIE.jar test/ClassOpp/conf.jie in out -relative

ClassOpp/in/HelloWorld.java ~=> ClassOpp/out/HelloWorld.java

ClassOpp/in/Assert.java ~=> ClassOpp/out/Assert.java

Done.

No errors encountered.

2 file(s), 2.284 seconds, average 1.142 seconds per file.

12 transformations total, average 6.0 per file. Breakdown by rule:

 Class: 12 (logged)

where test/ClassOpp/conf.jie contains:

<JIE>

<RULE opportunity="Class" log="1">

<ENTRY_ACTION>

{ System.err.println("Starting init code of ${className}"); }

</ENTRY_ACTION>

<EXIT_ACTION>

{ System.err.println("Finishing init code of ${classIdent}"); }

</EXIT_ACTION>
</RULE>

</JIE>

3 XML Configuration File

JIE accepts the instrumentation configuration as an XML file. The structure of the XML file is as follows:

Tag
Attributes
Content (optional)

JIE
none
INPUT

OUTPUT

RULE

FILTER

Top-level tag. All other tags are descendants of the JIE tag. There must be exactly one JIE element in the XML file, but it does not have to be the root.

INPUT
url (string)
none

Input path (relative to configuration file)

OUTPUT
url (string)
none

Output path (relative to configuration file)

RULE
name (string, optional)

opportunity (see below)

log ("0" or "1", optional, default "0")
FILTER

ACTION

ENTRY_ACTION

EXIT_ACTION

Defines a new rule with the given name and instrumentation opportunity.

Currently the name is used only for presentation of statistics.

The opportunity attribute is one of those listed below this table.

If the opportunity is “Entry/Exit”, then there must be either an ENTRY_ACTION element, an EXIT_ACTION element, or both.

For other opportunities, there must be an ACTION element.

If log is "1", a log file will be created for every source file, containing details on the transformations carried out. The content is opportunity-specific: e.g., Nominal Basic Block will produce a list of basic blocks.

ACTION
none
CDATA

Contains free text (subject to XML escape codes).

Defines the action template for rules using a single-action opportunity.

ENTRY-ACTION
none
CDATA

Contains free text (subject to XML escape codes).

Defines the action template for an entry action, in Entry/Exit rules.

EXIT-ACTION
none
CDATA

Contains free text (subject to XML escape codes).

Defines the action template for an exit action, in Entry/Exit rules.

FILTER
type ("package", "class" or "method")

value (string)
none

Defines a filter. If directly nested under a JIE tag, this is a global filter. If placed under a RULE tag, this is a local rule filter. Filters are combined using logical AND.

Only packages, classes and methods matching the pattern defined by value will be instrumented.

A pattern contains zero or more simple patterns separated by "|". The string matches the patten it matches at least one of the simple patterns, or if the pattern is empty.

A simple pattern may contain at most one "*" wildcard, which matches any string. If a simple pattern is of the form "*.xxx", then as a special case it also matches "xxx" (useful for the unnamed package). If it of the form "xxx.*", then as a special case it also matches "xxx" (useful for filtering by method or class name regardless of package).

Leading and trailing spaces are ignored.

Possible values for the opportunity attribute of the RULE tag are:

 Class (Entry/Exit)

 ClassInstantiation (Entry/Exit)

 NominalBasicBlock (Entry/Exit)

 NominalMethod (Entry/Exit)

 Method (single action)
The above list is automatically produced by JIE when ran with the --help argument (or no argument). For details about the meaning of each opportunity, see “Java Instrumentation Engine: Revised Design Document”.
Action templates may contain the following context parameters, which are expanded according to the context of the transformation:

Macro and type
Example
Description

${filename}

path
/home/tromer/org/tromer/jie/Demo.java
Fully qualified path to .java source file

${packageName}

name
org.tromer.jie
Fully qualified package name

${packageIdent}

identifier
jie
Unqualified package name

${className}

name
org.tromer.jie.Demo
Fully qualified class name

${classIdent}

identifier
Demo
Unqualified class name

${methodName}

name
org.tromer.jie.Demo.show
Fully qualified method name

${methodNameSig}

method header + qualification
void org.tromer.jie.Demo.show(String)
Fully qualified method name with type signature

${methodIdent}

identifier
show
Unqualified method name

${methodIdentSig}

method header
void show(String)
Unqualified method name with type signature

${line}

integer
753
Line number of the instrumentation point (in the original .java file)

${col}

integer
12
Column number of the instrumentation point (in the original .java file)

${position}

integer#integer
753#12
Line and column number of the instrumentation point (in the original .java file)

${jiid}

JIID
jiid:IIGLJMEMJ697A_75_12
JIE Instrumentation ID of the instrumentation point.

Numerous examples of JIE configuration files can be found in the test suit included in this package; each subdirectory of test includes a conf.jie file used for running the test.

4 Machine-generated sourcecode

Some portions of JIE are machine-generated. Specifically, all files in the following packages are machine-generated and should not be edited directly:

 org.tromer.jie.syntaxtree

 org.tromer.jie.visitor

 org.tromer.jie.parser

It is perfectly possible to make significant changes to JIE without the need to re-generate the machine generated portions. However, it is not recommended to manually edit these portions. Instead, the generation scripts should be modified to reflect the required changes.

The autogeneration process is rather complex, and involves numerous external tools and custom scripts. All scripts, input and output files are included in the autogen directory. See autogen/README.txt for more details. The autogenerated process requires Unix system utilities, Perl 5.004 or later and a Java Virtual Machine. It was tested under RedHat Linux 6.0, and should run with few modifications on other Unix systems, but is unlikely to run on non-Unix systems without major changes.

The following is transcript of a successful autogeneration run (not including JTB and JavaCC messages), which should provide a general impression of the tasks carried out.

JIE root directory is "/phor/e/Data/jie".

Java runtime found, using "-addclasspath" for classpath arguments.

Preparing JTB output directory "jtb_out".

Running JTB...

---JTB output here---

Done.

Fixing bug in JTB's TreeDumper visitor.

patching file `TreeDumper.java'

Removing position fields from NodeToken.

Creating additional visitor classes...

Generating NullObjectVisitor

Generating GreedyDepthFirst

Generating CallingDepthFirst

Generating PrePostDepthFirst

Generating PrePostTreeDumper

Done.

Preparing JavaCC output directory "javacc_out".

Running JavaCC... (this may take a while)

---JavaCC output here---
Done.

Adding 'package' declarations to parser source files.

Creating and evacuating source tree directories at "org/tromer/jie".

Copying generated source files into source tree...

Autogeneration tasks completed successfully.
5 Testing and Profiling

A comprehensive test suit was used during development, and is available as a part of the JIE package for regression testing of future versions. The tests consist of manually constructed input designed to test atypical, complex or edge cases, as well as some randomly chosen “typical” input. The test suit covers the filter mechanism and all instrumentation opportunities, but not the command-line application.

The test suit is available in the test directory. See test/README.txt for technical details.

JIE was profiled for hotspots using Intuitive Systems Inc.’s OptimizeIt Professional v3.02. The resulting optimizations, including alternative implementations of several standard JDK classes, produced a 200% performance improvement on typical input.

During development, JIE was tested on a large subset of the JDK 1.1 sourcecode. These tests isolated numerous problematic conditions related to fine points in the language definition, and revealed a few undocumented language features supported by the javac compiler. All of these conditions were addressed.

Output validity was tested by compiling the instrumented JDK 1.1 sourcecode using the following compilers:

 Sun JDK 1.1 (javac)
 Sun JDK 1.2 (javac)

 Symantec Visual Cafe 3.0c (sj)

 IBM Jikes 1.02

 Pizza 0.39g

JIE makes rather atypical use of some language features, which causes excessive stress for some compilers. Numerous bugs in the JDK 1.1 and Visual Cafe 3.0c compilers were encountered (and acknowledged by Sun and Symantec, respectively). A single error was encountered in JDK 1.2 (anonymous classes in interface field initializers), and is fixed in the current beta version of JDK 1.3. Notably, IBM’s Jikes v1.02 compiler accepted all valid input.

As a final test, JIE was tested on the full JDK 1.2 Java sourcecode (4,030 files, 43MB), using a configuration which invokes all instrumentation opportunities. The test ran flawlessly (except for 4 invalid input files that were also rejected by Java compilers), with an average throughput of 320 milliseconds per file on a Pentium II 350MHz running Windows NT 4.0 using JDK 1.2.

6 Known Issues

1. The Nominal Basic Block instrumentation opportunity does not handle the “?:” conditional operator. I’ve been unable to find any way to implement this without global type information.

2. In the Nominal Basic Block instrumentation opportunity: for a basic block that ends with “throw expression;” , the exit action is executed before the evaluation of the expression. Resolving this requires global type information.

3. For instrumentation at the beginning of methods (e.g., Method and Nominal Basic Block):
When explicit constructor invocation (“this()” or “super()”) is used, the entry action happens after the explicit constructor invocation. In the general case it's impossible to insert instrumentation code before their invocation. For more information, see the relevant item in the Java Language Specification at: http://java.sun.com/docs/books/jls/html/8.doc.html#78435. Note, however, that conditional operators (“&&” and “||”) in the parameter list of an explicit constructor invocation are properly transformed and logged.

4. If there are several rules employing the same instrumentation opportunity (possibly with different actions) and more than one of them has logging enabled, each rule overrides the previous one and only the log file of the last rule is retained. This is unlikely to be an issue under practical use, and could be resolved by changing the log file naming convention.

5. Code that uses a block-local inner class may be transformed incorrectly, since the name of the inner class is known only inside the block while the transformation may require helper methods outside the block. Resolving this may require global type information. This situation was never encountered in real-world tests.

External tools

The following tools are used by JIE:

Name:
XML Parser for Java

Version:
2.0.15 (1999/26/8)
Source:
IBM Corp.

Use:
Reading instrumentation configuration from XML files, during run-time.

Home page:
 http://www.alphaWorks.ibm.com/tech/xml4j
Used files:
xml4j.jar
Location:
lib/
Name:
Java Compiler Compiler (JavaCC)

Version:
1.1 (1999/08/10)
Source:
Sun Microsystems and Metamata

Use:
Parser generator, used during autogeneration.

Home page:
http://www.metamata.com/JavaCC/
Used files:
JavaCC.zip
Location:
autogen/bin/
Name:
Java Tree Builder (JTB)

Version:
1.1 (1999/01/10)
Source:
Kevin Tao, Purdue University

Use:
Tree builder and processor for JavaCC, used during autogeneration.

Home page:
http://www.cs.purdue.edu/jtb/

Used files:
jtb.jar
Location:
autogen/bin/
Name:
Java 1.2 grammar file for JavaCC
Source:
David Williams

Use:
Input to JavaCC.

Home page:
http://www.metamata.com/javacc/java12grammar.html

http://www.metamata.com/javacc/java12grammars.zip
Used files:
Java1.2.jj
Location:
autogen/input/
The JIE package includes binaries of all of the above tools, and therefore its distribution is affected by their license agreements. The minimum run-time requirements are the XML Parser for Java JAR file.

� For inner classes, after the package name ‘$’ is used as a separator instead of ‘.’.

� For named local classes (block-scoped), an illegal identifier of the form “line_col_ClassName"

where the class declaration starts on line line column col. For anonymous classes, same as the above using “_anonymous_” as the class name.

� For constructors, same as the class identifier. �For static initializers, the illegal identifier “*static-initializer@line#column*”. �For instance initializers, the illegal identifier “*instance-initializer@line#column*”. �For field initializers, the illegal identifier “*field-initializer@line#column*”.

1/9

