Java Instrumentation Engine
REVISED DESIGN DOCUMENT

Eran Tromer <eran@tromer.org>

for Shmuel Ur, IBM Haifa Research Lab

as part of Course 236705

Technion, Israel Institute of Technology

1999/11/18

Table of Content

5The Java Instrumentation Engine: Overview

Instrumentation Configuration
6
2.1
Overview
6
2.2
Opportunities
7
2.3
Actions
9
2.4
Generic Context Parameters
10
2.5
Generic Static filters
11
2.6
Generic Dynamic Filters
11
2.7
Global Parameters
11
2.8
JIE instrumentation IDs
11
2.9
XML Representation
12
The Java Parser Component
13
3.1
Overview
13
3.2
Parsing Tool Evaluation Criteria
13
3.3
Candidate Parsing Tools
14
3.4
Candidate Parsing Tools
14
3.4.1
JavaCC / Metamata Parse
14
3.4.2
JJTree
14
3.4.3
JTB
15
3.4.4
SableCC
15
3.4.5
ANTLR
16
3.5
Comparison Table
16
3.6
Choice of Parsing Tool
17
GUI Driver
19
Appendix A: Instrumentation Opportunities
24
Appendix B: Instrumentation Configuration DTD
32
Appendix C: Parsing Tool License Agreements
33
7.1
JavaCC (excerpts)
35
7.2
JTB
35
7.3
SableCC (excerpts)
36
Appendix D: Implementation Matrix
37
Bibliograpgy
39

Abstract

The Java Instrumentation Engine (JIE) is a general-purpose facility for sourcecode instrumentation of Java programs. This document provides a high-level specification of JIE, including capabilities, interfaces and key implementation issues.

Chapter 1 provides an overview of JIE, including description of uses and a schematic division into components.

Chapter 2 describes the capabilities of JIE and how these capabilities are used. It introduces the concept of instrumentation configuration – a list of rules specifying what sourcecode transformations to apply. In combination with the relevant appendices, this chapter defines the core functionality of JIE. Appendices A, B and C add details pertaining to this chapter.

Chapter 3 discusses one major component of JIE, the Java sourcecode parsing tool. This component is to be based on an externally available tool. Requirements and evaluation criteria are listed and candidates are evaluated. Appendix D provides highlights from their license agreements.

Chapter 4 depicts a design for a GUI-based interface to JIE, using screenshots of a UI prototype.

Appendix E specifies a proposal for a functionality subset that is appropriate as a current implementation goal.

What’s New Since “Design Stage: Revised Design Document” (1999/08/19)

Minor changes in the transformation of the Class Instantiation instrumentation opportunity to create cleaner code if only an Exit action is defined (no Entry action).

Changes in the transformation of the Nominal Basic Block opportunity.

Noted that conveniently, Java reserves identifier names beginning with ‘$’ for use of source processing tools such as JIE.

Generic context parameters: defined class name and identifiers for inner classes (including anonymous). Defined method identifiers for constructors, static initializers and instance initializers.

Reflected availability of JavaCC 1.1 (first release since JavaCC 0.8pre2, which was previously evaluated).

Added the ability to process a single file, in addition to a directory tree.

Minor changes to the XML configuration example.

In the Instrumentation Opportunities table, noted that the documented transformations are only a proof-of-concept. The actual transformations carried out by JIE are quite different, especially for Nominal Basic Block.

What’s New Since “Design Stage: Final Report” (1999/03/19)
The names of several generic context parameters were changed to improve clarity and compliance with the Java Language Specification terminology.

Documented handling of nested and anonymous classes in generic context parameters.

The format of JIID changed to use 13 Base32 characters instead of 12 Base64 characters, and underlines instead of periods.

The transformation Nominal Method instrumentation opportunity was changed for compatibility with the annotation-based transformation implementation.

The proposed transformations Field Read and Field Write opportunities are incorrect. It is possible to perform them without global type information, but it’s more complex than previously depicted. They are currently left greyed-out.

Minor change in the parsing of the Logging Statement global parameter.
1 The Java Instrumentation Engine: Overview

The goal of this project is construction of a general-purpose facility for sourcecode instrumentation of Java programs. In its basic mode of operation, the Java Instrumentation Engine (JIE) receives a Java source file and instrumentation instructions, and emits appropriately transformed Java sourcecode.

Sourcecode instrumentation is automated global modification of the sourcecode to include additional operations, usually for testing and analysis purposes. Uses include:

 Profiling (e.g., bottleneck identification)

 Execution logs (e.g., for off-site support)

 Debugging of time-sensitive systems or conditions

 White-box testing

 Coverage analysis

 Addition of error checking and error handling code

Sourcecode instrumentation normally does not affect program semantics – the typical instrumentation code merely reports some state information to an external agent. However, this is not necessarily the case (e.g., addition of error checking code).

The Java Instrumentation Engine is intended to provide a flexible and extendible tool for performing all but the most specialized instrumentation chores. At its current incarnation it is specific to the Java language, and is written in Pure Java code. Also, at this stage generality, clarity and rapid development take precedence over performance issues.

Schematically, JIE is composed of the following components:

1. Library of instrumentation opportunities

2. Instrumentation configuration, specifying what to do at each instrumentation opportunity

3. Input handling: Java sourcecode parser

4. Output handling: Java sourcecode emitter

5. Main driver: Invokes the parser to build an internal representation of the input, performs the transformation according to the instrumentation configuration, and invokes the emitter to produce output.

6. Command-line application

7. GUI-based driver application

Components 1, 2, 3, 6 and 7 are discussed in detail in this document. Components 4 and 5 consist of implementation details that do not form a part of this high-level specification.

2 Instrumentation Configuration

2.1 Overview

JIE performs instrumentation in a batch process based on an instrumentation configuration. An instrumentation configuration consists of:

 Global parameters (e.g., input and output paths)

 Global filters

 Instrumentation rules

An instrumentation rule determines the instrumentation points – portions of the sourcecode that will undergo instrumentation transformation. For each such instrumentation point, it determines what transformation will be applied. Code inserted by JIE during such transformation is called instrumentation code. An instrumentation rule is composed of four parts:

1st. Name

2nd. Opportunity

3rd. Action

4th. Static filters

5th. Dynamic filters

A. For readability purposes, each rule can be assigned a name. Rule names are not necessarily unique.
B. The instrumentation opportunity determines which code locations are candidates for instrumentation, and what is the general nature of the transformation they will undergo to insert the instrumentation code. Examples include entry into method, entry into basic block and throwing of an exception.

C. The instrumentation action determines what the instrumentation code does. Common examples include writing trace data to a file and calling some methods. The general case is using an action template, which is an arbitrary string (usually a Java statement) that is textually inserted at the appropriate location, as defined by the instrumentation opportunity.

Action templates can include macros that expand to context parameters. For example, the following action template:

logFile.write(${line}, "${method}", "Impossible Event Occured");

might be expanded to:

logFile.write(523, "il.ac.technion.cs.sandwichMachine.fill", "Impossible Event Occured");

Some context parameters, such as the method name and line number used above, are always available. These are called generic context parameters. Other context parameters are specific to certain instrumentation opportunities – for instance, the class name in the Class Instantiation opportunity.

D. Static filters limit the set of actual instrumentation points to a subset of all the code constructs that match the opportunity. Each such filter provides a limiting criterion, such as: package name, class name, class modifiers and method visibility. They are called “static” because they determine where instrumentation code will be inserted at instrumentation time – where a static filter criterion is not matched, no code is inserted.

E. Dynamic filters are similar to static filters in that they determine whether the instrumentation action is executed in specific cases. These criteria are, however, evaluated at run-time. This means that the instrumentation code is always inserted (assuming the static filters are matched), and additional code is inserted to control whether the action takes place or not every time the instrumentation point is reached.

Both static and dynamic filters may be generic to all opportunities or specific to certain opportunities. All the dynamic filters currently defined are generic.

Generic static filters can be used both inside instrumentation rules and as top-level global filters. Global filters are applied to all the rules in the instrumentation configurations, in addition to the rule-specific filters.

Both static and dynamic filter types are combined using a logical “AND” operation. Facilities for combining filters using “OR” and “NOT” and for building nested conditions may be added in the future.

Each instrumentation point is assigned an JIE instrumentation ID (JIID). A JIID can be used to uniquely identify an instrumentation point in the context of a given set of sourcecode files.

Persistent storage and of instrumentation configurations is done via a custom XML DTD, using an externally available XML processor.

2.2 Opportunities

JIE provides a library of instrumentation opportunities that can be used to define instrumentation rules. This instrumentation opportunity library essentially defines the core capabilities of JIE.

The selection criteria for opportunities are usefulness and feasibility. First, opportunities were chosen based on expected uses for JIE and inspection of related tools. Some opportunities, such as Method, emerged as absolutely essential. Others, like Exception Throw, are not in obvious and immediate demand but it’s easy to see their potential usefulness.

The feasibility of adding an instrumentation opportunity to JIE depends on the transformation complexity and on the required data. The sourcecode transformation required to achieve certain transformations are non-trivial, and require non-traditional use of some Java language constructs (e.g., see the transformation for Class Instantiation). Other potential opportunities require complete rewriting of sourcecode portions.

The main feasibility limitation, however, is the data required by some opportunities – both for identifying potential instrumentation points and for performing the transformation. JIE processing is performed purely on per-file basis. This means that any opportunity that requires information that is not necessarily available in the currently processed .java file cannot be achieved under the current model. Specifically, this means that opportunities may not depend on availability of global type information – method signatures and modifiers, field types and inheritance relationships for classes that are not defined in the current .java file. One must remember that JIE does not have at hand all the information available to a Java compiler handling the very same source file. See Appendix C: Global Type Information for a possible way to address this.

The following is a brief list of all currently envisioned instrumentation opportunities, subject to the above criteria.

 Method (Entry/Exit)

 Nominal Method (Entry/Exit)

 Class (Entry/Exit)

 Class Instantiation

 Wait Set Operation

 Field Read

 Field Write

 Exception Throw

 Exception Catch

 Nominal Basic Block

For a full specification, see Appendix A: Instrumentation Opportunities.

In the above list, “Nominal” means that the instrumentation code is affected by exceptions differently than by other control flow mechanisms, and is therefore suitably for use mainly in the absence of exceptions.

Noticeably missing are the following opportunities:

 Basic Block
An exception-safe version of Nominal Basic Block
 Method Invocation
Instrumentation points just before and just after a call to certain methods, on the caller’s side. This is in contrast to Method and Nominal Method, which put the instrumentation in the called method and are therefore not applicable for library methods.

 Synchronized Operation
Instrumentation points just before and just after every operation that may incur use of Java’s built-in thread synchronization mechanism.

While these opportunities are in demand, they are not currently feasible in the above sense. Specifically, all of these opportunities require availability of global type information.

To see the problem with Basic Block, consider the following Java expression:

someObject.someMethod(argObject.argMethod())

We’d like to add an instrumentation point just after argMethod returns, but before someMethod is called. Alas, apparently there is no way to achieve this that does not involve knowing either argMethod's return value or someMethod's argument type. Both of these fall under the category of global type information: they are likely to be declared outside the current .java file, and are therefore unavailable for JIE.

The problem with Method Invocation is that given method invocation expression, we don’t necessarily know the type of the object whose method is invoked – this requires global type information. Lacking that, the only possibility is to filter solely based on the method name (regardless of the object), which is clearly of very limited usefulness.

The issue with Synchronized Operation is similar but even more extreme. In Java, operations related to threads and synchronization include:

1st. synchronized statements
2nd. Invocation of methods declared synchronized
3rd. The following java.lang.Object methods:
wait (in all overloaded forms), notify, notifyAll

4th. The following java.lang.Thread methods:
start, stop, suspend, resume, join, interrupt, yield, sleep, destroy

5th. The following java.lang.ThreadGroup methods:
stop, suspend, resume, destroy

Of the above, only categories A and C are feasible in the general case. Category A requires simple syntax analysis. Category C can be handled by matching method names regardless of the object, since the relevant methods are declared final in java.lang.object, and therefore belong to all Java classes and cannot be overridden.

Category B requires knowing method modifiers, which are a particularly problematic case of global type information: they are not necessarily available in sourcecode form at all. For instance, in order to learn whether a method of a library class is synchronized, JIE would have to parse compiled .class files placed inside compressed .jar archives. This is clearly outside the current scope of this project.
Categories D and E are special cases of the Method Invocation problem described above – they requires knowing, for every object whose methods are called, whether it’s an instance of java.lang.Thread or java.lang.ThreadGroup(or their descendants). Filtering merely by method name is insufficient, since names such as start, notify and join are likely to be used by other classes as well – for example, the method start is also defined (with totally different semantics) for java.applet.Applet.

Note that Category C, the only consistent subset of the above categories that is feasible, is handled by the Wait Set Operations instrumentation opportunity.

2.3 Actions

Each instrumentation rule specifies an action: either an action template or one of a few specific action types.

An action template is a string that is inserted at the appropriate location in the code. Note that the instrumentation transformation may include additional code that is not a part of the action template, but is required for correct insertion of the action. Action templates can include macros that are expanded as the instrumentation code is inserted. All macros have the form “${macro-text}”.

The following macros are defined:

Macro
Description

${${}
Expands into the string “${“, which cannot be specified otherwise.

${insert "file"}
Inserts the specified file in the current location. Macro expansion will not occur in the included file.

${include "file"}
Includes the specified file in the current location. Recursive macro expansion is performed.

${param}
Expands into the appropriate context parameter. This can be either a generic context parameter (see Generic Context Parameters) or an opportunity-specific context parameter (see Appendix A: Instrumentation Opportunities).

Currently only one specific (i.e., non-template) action is defined: Write to Log. It relies on the Logging Statement global parameter (see Global Parameters) to simplify creation of rules that write strings to a logging stream, such as a trace file. This action type receives one string argument, message, which undergoes macro expansion and is then inserted into the logging statement.

For instance, if Logging Statement is set to

java.lang.System.out.println("${msg}");
then a Write to Log action with the message

I’m at ${methodName} (line {$line})
will expand to something similar to

java.lang.System.out.println("I’m at getData (line 42)");

Note that some instrumentation opportunities define two separate actions (typically Entry and Exit). While the opportunity filters are shared, each action is specified and applied separately.

It’s possible (in fact, likely) for several rules to insert instrumentation code at the same location. In this case, all actions are guaranteed to be executed (subject to dynamic filters), at an unspecified order.

2.4 Generic Context Parameters

The following context parameters are implicitly available in the actions of all opportunities.

Macro and type

Example
Description

${filename}

path
/home/tromer/org/tromer/jie/Demo.java
Fully qualified path to .java source file

${packageName}

name
org.tromer.jie
Fully qualified package name

${packageIdent}

identifier
jie
Unqualified package name

${className}

name
org.tromer.jie.Demo
Fully qualified class name

${classIdent}

identifier
Demo
Unqualified class name

${methodName}

name
org.tromer.jie.Demo.show
Fully qualified method name

${methodNameSig}

method header + qualification
void org.tromer.jie.Demo.show(String)
Fully qualified method name with type signature

${methodIdent}

identifier
show
Unqualified method name

${methodIdentSig}

method header
void show(String)
Unqualified method name with type signature

${line}

integer
753
Line number of the instrumentation point (in the original .java file)

${col}

integer
12
Column number of the instrumentation point (in the original .java file)

${position}

integer#integer
753#12
Line and column number of the instrumentation point (in the original .java file)

${jiid}

JIID
jiid:IIGLJMEMJ697A_75_12
JIE Instrumentation ID of the instrumentation point (see JIE instrumentation IDs)

For nested classes, the className is created by concatenating the nested class’s identifier to the name of the encoding class, separated by ‘$’. This is in compliance with the Inner Classes Specification. Similar action is taken for anonymous classes, except that the unique ID is not a decimal number (as specified in the standard) but a slightly more readable representation containing the line and column number of the class declaration.

In both cases, classIdent contains only the last part of className, after all ‘.’ and ‘$’ separators. These rules apply to the class portions of methodName and methodNameSig as well.

2.5 Generic Static filters

Static filters cause rules to transform only a subset of the potential instrumentation points defined by the rule’s opportunity. The following filters can be applied to for all instrumentation rules regardless of opportunity types. In addition, they can be used as global filters.

Name
Parameter
Description

Package
Fully qualified package name
Limit to specific package and sub-packages

Class
Fully qualified class name
Limit to specific class

Method
Fully qualified method name

Limit to specific method

Class visibility
public/package/nested/local
Limit to classes with given visibility

Method visibility
public/protected/package/private
Limit to methods with given visibility

Excluded JIIDs
URL of file containing a list of JIIDs, one per line
Skip all instrumentation points whose JIID is mentioned in the file

2.6 Generic Dynamic Filters

Currently envisioned dynamic filters include:

 Enable/Disable
Enable/disable instrumentation at run-time.

 Once Only
Execute action only the first time the instrumentation point is reached.

 Every N Times
Execute action only once every N times the instrumentation point is reached.

 Minimum Time Interval
Do not execute action if less than the specified time has elapsed since the last time it was executed.

2.7 Global Parameters

Beside instrumentation rules and global filters, an instrumentation configuration includes a few general parameters:

 Input
The root directory of the source files to be instrumented. This directory will be scanned recursively. Alternatively, a single input file.

 Output
The root directory for output files. The instrumented files will be placed here in a structure reflecting that of the input directory. Alternatively, a single output file (iff a single input file was specified).

 Logging Statement
The text inserted when using the Write to Log instrumentation action. “${msg}” will be replaced by the logged message. See Actions for an example.
2.8 JIE instrumentation IDs

A Java Instrumentation ID (JIID) is used to uniquely identify an instrumentation point in the context of a given set of sourcecode files. This means that after running JIE, each instrumentation point has a JIID different than all other instrumentation points in the output, and after running JIE again, JIIDs may change in the following ways:

 Input files changed: undefined (no guarantees whatsoever).

 Instrumentation rules changed: instrumentation points caused by rules whose opportunity and action fields were left intact retain their JIIDs. Others have JIIDs different from all other JIIDs, new and old alike.

 None changed: No change in produced JIIDs.

A JIID has the following structure:

jiid:hash.line.column

For example:

jiid:IIGLJMEMJ697A_75_12

line and column specify the location of the instrumentation point in the original .java file. hash is a 64-bit long integer represented as 13-character Base32 string (all characters are in the range ‘A’..’V’, ‘0’-‘9’). It’s produced by hashing together the following values:

 Fully qualified class name

 Opportunity and action fields of the rule that created the instrumentation point.

It’s virtually impossible for JIE to create two identical JIIDs except when the above values are identical.

The purpose of the “jiid:” prefix is to ease automated extraction of JIIDs from instrumented sourcecode files, as well as facilitate further manipulation, using text-processing tools such as sed.

JIIDs’ primary use is in coverage testing, using the Excluded JIIDs static filter to limit the instrumentation scope to code that has not undergone coverage analysis yet.

2.9 XML Representation

Instrumentation configurations can be represented using XML structured storage (see [XML]). This allows for convenient external manipulation of instrumentation configurations, and provides ample room for future extensions. Using existing XML parsers, this representation may actually be easier to provide than a non-standard textual storage format.

There are several XML parsers written in Java that are publicly available:

Name
Source
URL

XML Parser for Java
IBM
http://www.alphaWorks.ibm.com/tech/xml4j

XP
James Clark
http://www.jclark.com/xml/xp/

Lark
Tim Bray
http://www.textuality.com/Lark/

All of the above are suitable for our purpose. The above list represents the order of preference – if no particular issues arise, the IBM parser will be used.

Representation of instrumentation configuration uses a simple XML Data Type Definition (DTD), which reflects the content of this chapter in a fairly straightforward way. For an example, see Appendix B: Instrumentation Configuration DTD.

3 The Java Parser Component

3.1 Overview

The purpose of the Java Parser component is to convert the input sourcecode into an internal representation suitable for further processing. While the Java language is relatively simple compared to alternatives, the task of constructing a full Java parser is not trivial. Therefore, the project will make use of existing tools to accomplish this task. Typically, such tools accept a grammar specification of some kind, and generate the sourcecode for an appropriate parser.

Strictly speaking, the parser component is composed of four parts: a lexical analyzer (lexer), the parser per-se, a tree builder and a visitor pattern. The lexer and parser should have full support for the Java language, including recent extensions and Unicode escape codes. Numerous Java tools fulfill these requirements. Our main concern is therefore with the more advanced functionality.

It is possible to perform the instrumentation transformation in either of two ways:

1. Using ad-hoc parser callbacks – performing all work during the parser operation.

2. Building a complete in-memory Abstract Syntax Tree (AST), and then operating on this tree.

The second alternative is easier to work with, and allows greater flexibility and generality in the design of the instrumentation framework. Since the whole syntax tree is available simultaneously, such operations as inspection of context and multiple passes become much simpler and more efficient. On the down side, this entails non-negligible memory consumption (on the order of 0.5-3KB per line of source), and the related memory allocation overhead.

For our needs, flexibility and clarity are more important than performance optimization. Therefore we choose the second alternative, and require tree-building functionality from the parsing tool.

Operations on the AST (namely looking for instrumentation opportunities) are best carried out using the Visitor design pattern [GAMMA]. The Visitor pattern provides a flexible enumeration scheme for heterogeneously typed data structures, such as the AST. It provides the means to achieve encapsulation and proper modularity, while maintaining strong typing.

3.2 Parsing Tool Evaluation Criteria

The following evaluation criteria are used to evaluate potential parsing tools for this project.

1. Java language support
Availability of up-to-date grammars including JDK 1.1 extensions
. Support for Unicode escape codes.

2. Functionality
Level of functionality offered by the tree and Visitor pattern implementation. This includes provided and autogenerated utility classes.

3. AST structure
Clarity, convenience and safety of the AST object structure. This includes strong typing, readable identifier names and encapsulation of unsafe operations.

4. Documentation and support
Quality of documentation and availability of interactive support via mailing lists, newsgroups and personal e-mail.

5. Development status
Preferable are active projects with frequent releases, short response time to bug reports and high rate of feature extension.

6. License and source availability
The tool must be publicly available. Its licensing terms must not limit the ability to distribute JIE. Limitations on commercial use (e.g., distribution for a charge) may be acceptable. Sourcecode availability is preferable but not critical, since our main reliance is on the code autogenerated by the tool code.

7. Pure Java
Any code generated or provided for included in JIE must be Pure Java. Tools used only during development should also preferably (but not critically) have Pure Java implementations.

8. Performance
Time and space efficiency is impossible to reliably evaluate without further work, and are therefore not considered here. This may change if it becomes evident that performance may be unacceptable for some alternatives.

9. Robustness
Frequency of problems and how well they’re handled (identified, announced and solved). All inspected products are satisfactory in this regard. As precise comparison is difficult and unnecessary, it is not carried out here.

10. Parser type
Different types of parsers and grammars (e.g., LL(1), LL(k), LALR(1)) affect the structure of the AST. It is assumed that the differences are inconsequential, as long as full Java grammar is available.

3.3 Candidate Parsing Tools

This section lists the potential parsing tools available, under the limitations listed above. Basic details and an overview are given for each. Further details and comparative evaluation are provided in the next section. Searching was based on comprehensive Internet indices of compiler tools [CFCI] [CCCT].

3.4 Candidate Parsing Tools

3.4.1 JavaCC / Metamata Parse

Name:
Java Compiler Compiler (JavaCC)

Version:
1.1 (1999/08/10)
Source:
SunTest, Sun Microsystems

Home page:
http://www.suntest.com/JavaCC/
Name:
Metamata Parse

Source:
Metamata Inc.
Home page:
http://www.metamata.com/JavaCC/
Note:
The authors of JavaCC have left SunTest and founded Metamata Inc. Future development of JavaCC will be under the Metamata Parse title, under similar licensing terms.

JavaCC is the most widely used Java parser generator. Originally written in SunTest and now under the auspices of Metamata Inc., JavaCC is guaranteed to be compatible and efficient in handling of Java programs. JavaCC includes a lexer generator and a parser generator, and numerous sample grammars (including Java 1.1). It also includes a separate AST builder, JJTree (see below).

JavaCC has a feature not supported by other alternatives, called “special tokens”. This features enables inclusion of whitespace and comments in the AST, which provides an easy way to fully preserve the sourcecode content after transformation.

3.4.2 JJTree

Name:
JJTree (part of JavaCC)

Version:
1.1 (1999/08/10)
Source:
SunTest, Sun Microsystems

Home page:
http://www.suntest.com/JavaCC/
Bundled with the JavaCC is a JJTree, an AST tree builder built upon the JavaCC lexer and parser. JJTree works by augmenting the grammar file with AST node construction code.

 JJTree provides powerful extension hooks during the tree construction stage. These can be used, for instance, to reduce memory consumption in an application-specific way.

On the down side, JJTree’s AST structure is lacking from an OO design perspective. It can either use a single class for all tree nodes, or produce weakly typed references (all access via typecast). Both greatly hamper ease of development and code reliability. In addition, its support for the Visitor pattern is very rudimentary.

3.4.3 JTB

Name:
Java Tree Builder (JTB)

Version:
1.1 (1999/01/10)
Source:
Kevin Tao, Purdue University

Home page:
http://www.cs.purdue.edu/homes/taokr/jtb/
JTB, like JJTree, is an AST tree builder that works by augmenting JavaCC’s input grammar with AST node construction code. Unlike JJTree, it is developed separately from JavaCC, but compatibility is consistently maintained. JTB does not deny access to JavaCC’s low-level functions, such as token location information and special token.

The AST object structure constructed by JTB is mostly strongly typed, with notable exceptions such as grammar productions involving alternatives, lists and optional parts. Field names are numerical (e.g., f0, f1), which hampers readability.

JTB has a very good implementation of the Visitor pattern (with the exception of nodes containing multiple alternatives, which are still handled by a “switch” statement). In this respect, it is clearly superior to JavaCC’s own JJTree
.

JTB can generate several predefined visitor classes which implement commonly required functionality related to output and formatting. A simple Java pretty-printer example is also available. These classes may prove useful in the construction of the Java sourcecode emitter component of JIE.

3.4.4 SableCC

Name:
SableCC

Version:
2.6 (1998/11/09)
Source:
Étienne Gagnon, Sable Research Group

Home page:
http://www.sable.mcgill.ca/sablecc/
SableCC originated as Étienne Gagnon’s M.Sc. thesis [GAGNON]. Unlike JavaCC and its AST-building extensions, SableCC is designed from the grounds up to operate as an AST builder, and does not have independent lexer and parser functionality. Several grammars are included with SableCC, including Java 1.1. A Unicode preprocessor class is also provided.

SableCC’s great strength is its clean AST design, which is strictly strongly typed. Beyond code safety and clarity, this has the important practical benefit of the ability to easily inspect the AST content during debugging. The AST node classes support safe tree transformation with guaranteed consistency invariants. Field names are user-determined, and the provided Java grammar provides human-readable names.

The Visitor pattern implementation matches the AST in elegance. Depth-first and reversed-depth-first visitor classes are autogenerated.

3.4.5 ANTLR

Name:
ANTLR

Version:
2.5.0

Source:
MageLang Institute

Home page:
http://www.antlr.org
Note:
ANTLR replaces PCCTS (last version: 1.33), which was implemented in C++

ANTLR is a powerful lexer/parser generator that is actively developed and widely used. It is flexible and feature-laden with respect to grammar flexibility and parser generation. Tree construction instructions can be specified in the grammar. A Java 1.1 grammar is available, but is overly condensed and may need to be modified to be usable. Unicode is not yet supported.

The AST generated by ANTLR can be tailored for specific needs by simple grammar modifications. However, it uses a single tree node class for all nodes, which is inconvenient and unsafe.

ANTLR does not have a Visitor pattern, but provides an interesting alternative called “tree parsers” or “tree walkers” [ANTLR-REF]. A tree walker is essentially a grammar that operates on the Abstract Syntax Tree, after its construction. It is greatly simplified relative to the normal grammar, and can harness the full power ANTLR’s grammar facilities, including EBNF, syntactic predicates and semantic predicates.

By attaching code to tree walker productions, a tree walker can behave similarly to a Visitor. The advantage of this approach is that grammar rules can be used to declaratively and concisely specify the places in the grammar where the instrumentation code should be activated. Arbitrary procedural processing can then be performed in each of these places.

3.5 Comparison Table

JavaCC + JJTree
JavaCC + JTB
SableCC
ANTLR

Java language support
Full
Full
Full
No Unicode.

Java grammar requires modification.

Functionality

 Visitor pattern very rudimentary.

 Powerful AST creation hooks.

 Support for comment preservation.

 Visitor pattern mostly well- implemented

 Several visitor classes autogenerated.

 Support for comment preservation.

 Java pretty-printer included
 Visitor pattern well- implemented

 Basic visitor classes are autogenerated.
 Offers a powerful semi- declarative alternative to the Visitor pattern

AST structure
 Either uniform node type or weak typing (access via typecast)

 Numeric field names
 AST partly strongly typed (some access via typecast)

 Numeric field names

 AST strictly strongly typed

 Meaningful field names

 Uniform node type

 Meaningful field names

Documentation and support
Basic documentation available. Active mailing list and newsgroup.
Basic documentation available.
Basic documentation available but static. Author responds helpfully to inquires. Low-traffic mailing list.
Comprehensive documentation available. Active mailing list and newsgroup.

References: Web, Usenet, Mailing lists

(918) 179

(639) 35

(747) 123
(918) 95

(639) 35

(747) 0
 30

 28

261
826 (incl. PCCTS)
481 (incl. PCCTS)
130

Development status
Development status unclear – announcements contradict reality.
Actively developed
Developed in author’s free time. Recent releases did not add features. Extensions planned.
Actively developed

License and source availability
Source not available. Distribution of generated code not limited. See ‎8.1.
Open source, free for noncommercial use, commercial use status unclear.

See ‎8.2.
Open source, LGPL (no significant limitations). See ‎8.3.
Public-domain (no limitations)

Pure Java
Yes
Yes
Yes, but does not run under JDK 1.2

Yes

Sources of information:

 Information published on the tools’ web pages, including meta-information such as update frequency.

 E-mail and Usenet discussions with the authors of JavaCC, SableCC and ANTLR.

 Practical experimentation with JavaCC, JJTree and JTB. Using each tool, I generated a full Java parser / tree builder and inspected the generated code. I then run it on sample Java code and inspected the actual AST built in memory.

 Reference statistics generated using AltaVista Advanced Search queries on product name with appropriate filters.

3.6 Choice of Parsing Tool

JJTree is ruled out, since it is inferior to JTB in almost any respect. This leaves JavaCC+JTB, SableCC and ANTLR.

ANTLR’s main strength is in its semi-declarative visitor replacement. During more detailed design stages, it will become evident whether this feature is desirable. My current expectation is that this mechanism will prove somewhat too esoteric for our needs, and will not be used. Under such circumstances, ANTLR’s AST structure deficiencies and lack of other functionality render it inappropriate.

The two remaining candidates are JavaCC+JTB and SableCC. Both are satisfactory on all accounts, but provide somewhat different tradeoffs.

The following table reiterates the significant differences between these two alternatives.

JavaCC+JTB
SableCC

Functionality
Pretty printer included.

Comment preservation available.

AST structure
Hybrid
Strongly typed

Development status
Actively developed, with large user community.
Development in author’s free time, with a smaller user community.

License
JavaCC – closed source.

JTB – open source.

Commercial use limitations unclear.
LGPL: open source, no significant limitations.

Since both alternatives are satisfactory and neither is clearly superior, the final choice is deferred until future design details become evident. The architecture and usage of these tools are similar, so this will not have any adverse effect on the design process.

It should be noted that some of the deficiencies mentioned above can be resolved by modification of the code generated by the parsing tools. This may require non-negligible work, and has the disadvantage of precluding future upgrades. However, should the choice of alternatives narrow down for whatever reason, this can form a fallback strategy.

Future design decisions and tool evolution will determine the final choice.

4 GUI Driver

The basic functionality of JIE is provided in a Java class with no user interface. Two driver applications are provided for executing this class: a command-line utility and a GUI application.

The command-line utility is trivial – it receives an XML specification of the instrumentation configuration as its only parameter, and activates JIE on that configuration, with rudimentary progress indication.

The GUI driver offers additional functionality: it provides a GUI-based interface for editing instrumentation configurations. This chapter provides screenshots of a UI prototype that illustrate how this functionality is presented and used.

The GUI driver uses a fairly simple (albeit detail-laden) user interface. It’s composed of two windows: a main window which provides access to top-level details of the instrumentation configuration, and a Rule Settings dialog that provides access to rule details.

4.1 Main Window

The main window of the GUI application offers access to the top-level details: global parameters, global filters and the list of rules. It also provides the means to execute the instrumentation configuration, with detailed progress indication. Each of the above is placed in its own tab in a tab control. The following screenshots demonstrate the UI design.

[image: image1.emf]
Figure 1 - Global parameters

[image: image2.emf]
Figure 2 - Global filters

[image: image3.emf]
Figure 3 - Rule list

[image: image4.emf]
Figure 4 – Progress indication of instrumentation in progress

[image: image5.emf]
Figure 5 - Pull-down men

4.2 Rule Settings dialog

Clicking on the New or Edit button in the Rules tab of the main window opens the Rule Settings dialog. This dialog presents all the fields pertaining to the edited rule. As in the main window, the information is arranged in a tab control.

The first tab contains the rule name, opportunity and filters. In addition, there is one or more tabs dealing with action details. Most rules have a single Action tab, but rules that have both an entry action and an exit action have two independent action tabs, called Entry Action and Exit Action tabs, respectively.

The following screenshots illustrate the UI design. The rule depicted is identical to the second rule listed in the XML example provided in Appendix B: Instrumentation Configuration DTD.

[image: image6.emf]
Figure 6 - Rule Opportunity and Filters

[image: image7.emf]
Figure 7 - Opportunity selection

[image: image8.emf]
Figure 8 – Rule entry action

[image: image9.emf]
Figure 9 - Rule exit action

5 Appendix A: Instrumentation Opportunities

This appendix presents the full specification for all currently envisioned instrumentation opportunities, subject to the criteria listed in ‎2.2. Each opportunity is completely summarized in a table, using the following format:

Name
Name of instrumentation opportunity

Description
Description of the precise stage at which the instrumentation code is called.

If there are several sub-opportunities, each is described.

Filters
Names, types and descriptions of filters specific to this opportunity. Apart from these, all generic filters apply.

Context
Context parameters provided to the instrumentation actions, in addition to the generic context parameters.

Template
Generic form of the grammar element to which the opportunity is applied. Terminals are marked in bold. Words in non-bold specify non-terminals.
The transformed form of the grammar element. This transformation is for illustration purposes only, and is not a formal specification.

This template is a proof-of-concept that demonstrates the feasibility of the transformation. Actual transformations may differ.

Identifier names (temporary variables, etc.) will be chosen to be unique in their context. Conveniently, Java reserves identifier names beginning with ‘$’ for this type of use.

ACTION, ENTRY-ACTION and EXIT-ACTION specify the macro-expanded form of the rule action. Where applicable, they are followed by the opportunity-specific context parameters, in parenthesis.

Names for non-terminals in the templates, as well as general terminology, are based on [JAVA-LANG].

Name
Method (Entry/Exit)

Description
Entry: Before first line of a method.

Exit: After the last executed line of a method. This can be the last line, a return statement or any statement that caused method exit by exception throw.

Constructors, static initializers and instance initializers are considered as methods. Note that code in field initializers is not considered to be inside any method (see [JAVA-LANG], [JAVA-INNER]).

Filters
none

Context
none

Template

METHOD-HEADER {

 STATEMENTS

}

METHOD-HEADER {
 ENTRY-ACTION

 try {

 STATEMENTS

 } finally

 EXIT-ACTION

 }

}

Name
Nominal Method (Entry/Exit)

Description
Entry: Before first line of the method.

Exit: After the last executed line of the method.

In contrast with the Method opportunity, the exit action will occur only if the end of the method code is reached or a return statement is executed. If the method is quit via an exception throw the exit action will not be executed.

Constructors, static initializers and instance initializers are considered as methods. Note that code in field initializers is not considered to be inside any method (see [JAVA-LANG], [JAVA-INNER]).

Filters
none

Context
none

Template
RESULT METHOD-DECLARATOR

{

 STATEMENTS

}

inside STATEMENTS:

return EXPRESSION;

RESULT METHOD-DECLARATOR

{
 ENTRY-ACTION

 MODIFIED-STATEMENTS

 EXIT-ACTION

}
inside MODIFIED-STATEMENTS:

return exit_METHOD(result);

and at class scope, in the class that contains the method:

RESULT exit_METHOD(RESULT val)

{

 EXIT-ACTION

 return val;

}

Name
Class (Entry/Exit)

Description
Entry: At the beginning of a class body (before the first ClassBodyDeclaration).

Exit: At the end of a class body (after the last ClassBodyDeclaration).

This opportunity is useful for insertion of new class members or object initialization code. This is the only opportunity that places instrumentation points outside methods.

Filters
none

Context
none

Template
CLASS-HEADER {
 DECLARATION-1

 ...

 DECLARATION-N

}

CLASS-HEADER {

 ENTRY-ACTION

 DECLARATION-2

 ...

 DECLARATION-N

 EXIT-ACTION

}

Name
Class Instantiation (Entry/Exit)

Description
Entry: Just before a class is instantiated

Exit: Right after the newly built class instance is returned.

Filters
Instantiated Class
text pattern
Limit to classes that match the pattern

Context
${instanceClass}
name
The name of the instantiated class, as specified in the instantiation expression.

${instanceClassName}
identifier
The unqualified class name of the instantiated class

${object}
identifier
The newly created object (or array of objects)

Template

new CLASS(ARGUMENTS)

afterCreation_CLASS (

 beforeCreation_CLASS()?null:

 new CLASS(ARGUMENTS)

)

and at class scope, in the class that contains the instantiation expression
:

private CLASS

afterCreation_CLASS(CLASS obj)

{

 EXIT-ACTION(CLASS,obj)

 return obj;

}

private boolean

beforeCreation_CLASS()

{

 ENTRY-ACTION(CLASS)

 return false;

}

Name
Wait Set Operation (Entry/Exit)

Description
Entry: Just before a wait set operation.

Exit: Just after a wait set operation.

A wait set operation is a method call that directly affects an object’s wait set (as specified in [JAVA-LANG] section 17.14). These are the methods wait, notify and notifyAll of java.lang.Object.

Filters
none

Context
${object}
identifier
The object whose method was called.

Template
EXPRESSION.METHOD(ARGS);
where METHOD is one of these:

wait

notify

notifyAll
{

 java.lang.Object obj =
 EXPRESSION;

 ENTRY-ACTION(obj)

 obj.METHOD(ARGS);

 EXIT-ACTION(obj)

}

Name
Field Read

Description
Just before a field is read.

Only access via the this keyword (e.g., “this.color”) is supported. Identifying fields of other objects is not generally possible in JIE, since that requires global type information. It is assumed that most fields are private or protected, so this limitation should not be significant.

Filters
Field
text pattern
Limit to fields that match the pattern

Context
${field}
name
The fully qualified field name

${fieldName}
identifier
The unqualified field name

Template
this.IDENTIFIER

Except when in the operators “++” and “--“, or LHS of operators “=” and “op=”.
get_IDENTIFIER()
and at class scope:

private TYPE-OF-IDENTIFIER

get_IDENTIFIER()

{

 ACTION(IDENTIFIER)

 return this.IDENTIFIER;

}

EXPRESSION

Where EXPRESSION is one of the above operators applied to an expression of the following form (modulus parenthesis):

this.IDENTIFIER

Example: “this.date++”
get_modified_IDENTIFIER(

EXPRESSION)
and at class scope:

private TYPE-OF-IDENTIFIER

get_modified_IDENTIFIER

(TYPE-OF-IDENTIFIER val)

{

 ACTION(IDENTIFIER)

 return val;

}

Name
Field Write

Description
Just after a field is modified

The same limitations as in Field Read apply.

Filters
Field
text pattern
Limit to fields that match the pattern

Context
${field}
name
The fully qualified field name

${fieldName}
identifier
The unqualified field name

Template
EXPRESSION

where EXPRESSION is one of the following (modulus parenthesis)

this.IDENTIFIER =

 VALUE

this.IDENTIFIER op=

 VALUE

this.IDENTIFIER++
this.IDENTIFIER--
++this.IDENTIFIER

--this.IDENTIFIER
modified_IDENTIFIER(EXPRESSION)
and at class scope:

private TYPE-OF-IDENTIFIER

modified_IDENTIFIER(

TYPE-OF-IDENTIFIER val)

{

 ACTION(IDENTIFIER)

 return val;

}

Name
Exception Throw

Description
Just before the expression of a throw statement is evaluated and thrown.

Note that the throw expression may be complex and have side effects, yet the action occurs before it is evaluated. Also, the thrown object is not available as a context parameter. These limitations cannot in general be relieved without full global type information.

Filters
Exception class
text pattern
Limit to
throw new CLASS(...);

where CLASS matches the pattern.

Context
none

Template
throw EXPRESSION;

{

 ACTION

 throw EXPRESSION;

}

Name
Exception Catch

Description
Just before an exception is thrown.

Filters
Exception class
text pattern
Limit to classes that match the pattern

Context
${object}
identifier
The exception object that was caught

Template
catch (TYPE OBJECT) {

 STATEMENTS

}

catch (TYPE OBJECT) {

 ACTION(OBJECT)

 STATEMENTS

}

Name
Nominal Basic Block (Entry/Exit)

Description
Entry: Method entry and just after any control branching

Exit: Method exit and just before any control branching

Control branching occurs in while, do, for, if, switch, try, break, continue and throw statements, and in expressions using the conditional operators “&&", "||" and "?:".
This is not the traditional meaning of “basic block”, since jumps that don’t involve control branching (e.g., unconditional method invocation) do not break the basic block. Subsequently, “nominal basic blocks” are nested at each method call. The instrumentation action (or a processor of a resulting trace) may need to take this into account.

Note that some simple expressions (e.g., field access, array access and method invocation) in principle incur additional basic blocks even in the above sense, since they may throw an exception. However, adding instrumentation actions for each such expression would incur a dramatic explosion in code size, and is of questionable usefulness. It is also very hard to achieve in the general case, since global type information is required. This opportunity does not handle these cases, and may fail to perform the exit action in case of exception throw. That’s what the “Nominal” in “Nominal Basic Block” stands for.

Filters
none

Context
none

Template
METHOD-HEADER {

 STATEMENTS

}
The transformation is identical to Nominal Method.

if (EXPRESSION)

 STATEMENT1

else
 STATEMENT2

{

 boolean cond = EXPRESSION;
 EXIT-ACTION

 if (cond) {

 ENTRY-ACTION

 STATEMENTS1

 EXIT-ACTION

 } else {

 ENTRY-ACTION

 STATEMENTS2

 EXIT-ACTION

 }

 ENTRY-ACTION

}

switch (EXPRESSION) {

 SWITCH-LABELS-1
 STATEMENTS1

 SWITCH-LABELS-2

 STATEMENTS2

 ...

}

where SWITCH-LABELS-N contains:

case CONST-EXPESSION:
{

int switchVar = EXPRESSION;

EXIT-ACTION

switch (switchVar) {

 NEW-SWITCH-LABELS-1 {

 ENTRY-ACTION

 STATEMENTS1

 EXIT-ACTION

 }

 NEW-SWITCH-LABELS-2 {

 ENTRY-ACTION

 STATEMENTS2

 EXIT-ACTION

 }

 ...

}

ENTRY-ACTION

where NEW-SWITCH-LABELS-N contains:

case ((int)(CONST-EXPESSION)):

while (EXPRESSION)

 STATEMENT
{

 bool cond = EXPRESSION;

 EXIT-ACTION

 if (cond)

 do {

 ENTRY-ACTION

 STATEMENTS

 cond = EXPRESSION;

 EXIT-ACTION

 } while (cond);

 ENTRY-ACTION

{

for and do statements are transformed similarly to while statements. For more information about loops see [HOFSTADTER].

Labeled statements that aren’t loops cause entail starting a new basic block at their end, since a break statement can be used to exit them abruptly.

BREAK-STATEMENT
{

 EXIT-ACTION

 BREAK-STATEMENT

}

CONTINUE-STATEMENT
{

 EXIT-ACTION

 CONTINUE-STATEMENT

}

throw EXPRESSION;
{

 EXIT-ACTION

 throw EXPRESSION;

}

catch (FORMAL-PARAM){

 STATEMENTS

}
catch (FORMAL-PARAM){

 ENTRY-ACTION

 STATEMENTS

 EXIT-ACTION

}

finally {

 STATEMENTS

}
finally {

 ENTRY-ACTION

 STATEMENTS

 EXIT-ACTION

}

EXPRESSION1 && EXPRESSION2
conditionResult(EXPRESSION1) &&

 EXPRESSION2
and at class scope:

private boolean conditionResult(

 boolean leftResult) {

 EXIT-ACTION

 ENTRY-ACTION

 return leftResult;

}

The “||” conditional operator is transformed similarly to “&&“.

The issue of the “?:“ conditional operator is more complex, and may require global type information.

6 Appendix B: Instrumentation Configuration DTD

This appendix provides an example of what an XML representation of an instrumentation configuration looks like. For readability, comments and CDATA are emphasized. This representation uses its own DTD, under the namespace "http://www.tromer.org/jie". For details see [XML] and [XML-NAMES]. This example is not a formal definition, but suffices in order to provide the framework for further elaboration, to be done on per-need basis.

<XML xmlns="http://www.tromer.org/jie">

<JIE>

<!-- Global parameters -->

<INPUT url="~/project/src/" />

<OUTPUT url="~/project/jied/" />

<LOGGING_STATEMENT str='java.lang.System.out.print("${}");" />

<!-- Global filter: limit to own packages -->

<FILTER type="package" value="org.tromer" />

<!-- Log the instrumentation ID each time a basic block in our package is entered or exited -->

<RULE name="Basic block logging" opportunity="NominalBasicBlock">

<ENTRY_ACTION>

<WRITE_TO_LOG>${jiid} entered</WRITE_TO_LOG>

</ENTRY_ACTION>

<EXIT_ACTION>

<WRITE_TO_LOG>${jiid} exited</WRITE_TO_LOG>

</EXIT_ACTION>

</RULE>

<!-- Write method execution time in milliseconds to stdout, for the first execution of each method in the BitBucket class.

This rule is shown in the GUI screenshots in chapter 4.

-->

<RULE name ="Method stopwatch" opportunity="Method">

<ENTRY_ACTION>

long startTime__ =

Calendar.getInstance().getTimeInMillis();

</ENTRY_ACTION>

<EXIT_ACTION>

long diff__ = Calendar.getInstance().getTimeInMillis()

 - startTime__;

System.out.println("${methodNameSig} took "+diff__+"ms");

</EXIT_ACTION>

<FILTER type="class" value="org.tromer.test.BitBucket" />

<DYNAFILTER type="once" />

</RULE>

</JIE>

</XML>

7 Appendix C: Global Type Information

A current design limitation of JIE is lack of global type information – method signatures and modifiers, field types and inheritance relationships for arbitrary classes. JIE processes its input sourcecode one file at a time, so it does not have access to information declared anywhere but in the currently processes file. Furthermore, some useful information may be available only in compiled form (.class files), or in compiled and compressed archives (.jar or .zip files).

This limitation entails some limitations on the offered set of instrumentation opportunities, and on their details of operation. A useful and usable set of opportunities can be provided nonetheless, as described in this document. However, it seems prudent to suggest means of resolving this issue, as it may form a barrier for future extension.

One way to collect global type information is to parse all classes imported by the currently processed files, whether in sourcecode form or in binary form. Clearly this approach is very costly in terms of implementation time, performance in maintainability.

An alternative approach is using the Java Reflection API. This set of classes, added to the Java specification in JDK 1.1, allows Java code to load a compiled Java classes at run-time and make queries about their content: inheritance, modifiers, methods – in fact, all the elements required by JIE.

For instance, the following program (based on [FLANAGAN]) uses the Java reflection API to print the modifiers, name, superclass and implemented interfaces of an arbitrary Java class, whose name is provided as a string.

import java.lang.reflect.*;

public class ShowClass {

public static void main(String[] args) throws ClassNotFoundException {

 // Get class object. Loads the class if needed.

 Class c = Class.forName(args[0]);

 print_class(c);

}

public static void print_class(Class c)

{

 // Print modifiers and name and superclass:

 System.out.print(

 Modifier.toString(c.getModifiers()) +

 " class " + c.getName() +

 " extends " + c.getSuperclass().getName());

 // Print implemented interfaces:

 Class[] interfaces = c.getInterfaces();

 if ((interfaces != null) && (interfaces.length > 0)) {

 System.out.print(" implements ");

 for(int i = 0; i < interfaces.length; i++) {

 if (i > 0) System.out.print(", ");

 System.out.print(interfaces[i].getName());

 }

 }

}
This solution has the following implications:

 All classes must be available in compiled form that is up-to-date. This means that the instrumented files need to be compiled twice – once before instrumentation and once after.

 Since the classes will actually be loaded, all Java run-time parameters must be set correctly, as if the instrumented program was about to be executed.

 JIE and the class loaded for reflection exist under the same Java Virtual Machine. This may create unexpected interaction. For instance, library conflict can result if JIE and the instrumented sourcecode rely on different versions of the same external library.

 Instrumentation of even a tiny portion of the program may cause a cascade of class loading that may have a major performance impact.

Furthermore, in order to make use of global type information there’s need for very elaborate instrumentation transformations. In particular, expressions need to be taken apart and analyzed for the types of their constituent parts, taking into account scope, nesting and casting rules. This analysis is far from trivial.

As can be seen, this solution for the global type information issue is fairly complex and clearly outside the scope of the current design and implementation stages. However, should the need arise in the future, it offers the means for future advancements.

8 Appendix D: Parsing Tool License Agreements

This appendix provides the portions of the tool license agreements that may affect their suitability for this project.

8.1 JavaCC (excerpts)

These are relevant excerpts from the JavaCC license agreement, as provided on the download page:

http://www.suntest.com/JavaCC/javaccdownload.html
Note that the Metamata Parse license agreement is different, and can be found at:

http://www.metamata.com/download/license.html
 Java Compiler Compiler Download and License Agreement

SUN MICROSYSTEMS, INC. ACTING BY AND THROUGH ITS SUN TEST GROUP ("SUN") IS WILLING TO LICENSE THE JAVA(TM) COMPILER COMPILER(TM) SOFTWARE, SAMPLE GRAMMARS, AND THE ACCOMPANYING DOCUMENTATION ("SOFTWARE") TO YOU ONLY ON THE CONDITION THAT YOU ACCEPT ALL OF THE TERMS IN THIS AGREEMENT.

...

1. LICENSE

You are permitted to download, install, and use the Software on a single computer or a network server. You may use the Software as installed on a network server on clients of that server. You may copy the Software only for backup purposes in support of your use of the Software, provided that you reproduce all copyright and other proprietary notices that are on the original copy of the Software.

2. SAMPLE GRAMMARS

You may modify the sample grammars included in the Software to develop derivatives thereof ("Sample Grammar Derivatives"), and sublicense the Sample Grammar Derivatives directly or indirectly to your customers.

3. DEVELOPED PRODUCTS

You may use the Software to generate software program(s) ("Developed Programs"). Sun claims no rights in or to the Developed Programs.

...

8.2 JTB

This is the JTB license agreement, as shown during the installation process.

It is not clear from this license whether commercial use of generated code is permitted.

All files in the distribution of JTB, The Java Tree Builder are

Copyright 1997, 1998 by the Purdue Research Foundation of Purdue

University. All rights reserved.

Redistribution and use in source and binary forms are permitted

provided that this entire copyright notice is duplicated in all

such copies, and that any documentation, announcements, and

other materials related to such distribution and use acknowledge

that the software was developed at Purdue University, West Lafayette,

Indiana by Kevin Tao and Jens Palsberg. No charge may be made

for copies, derivations, or distributions of this material

without the express written consent of the copyright holder.

Neither the name of the University nor the name of the author

may be used to endorse or promote products derived from this

material without specific prior written permission.

THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR

IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED

WARRANTIES OF MERCHANTABILITY AND FITNESS FOR ANY PARTICULAR PURPOSE.

8.3 SableCC (excerpts)

This is an excerpt from the GNU Library General Public License (LGPL), under which SableCC is distributed. The LGPL is similar to the GPL, but provides somewhat more liberal provisions for some uses. SableCC includes utility classes that need to be distributed along with the final product, so this is directly relevant.

The LGPL can be found at

http://www.gnu.org/copyleft/lgpl.html
In this excerpt, “Library” refers to SableCC.

...

6. As an exception to the Sections above, you may also compile or link a "work that uses the Library" with the Library to produce a work containing portions of the Library, and distribute that work under terms of your choice, provided that the terms permit modification of the work for the customer's own use and reverse engineering for debugging such modifications.

You must give prominent notice with each copy of the work that the Library is used in it and that the Library and its use are covered by this License. You must supply a copy of this License. If the work during execution displays copyright notices, you must include the copyright notice for the Library among them, as well as a reference directing the user to the copy of this License. Also, you must do one of these things:

a) Accompany the work with the complete corresponding machine-readable source code for the Library including whatever changes were used in the work (which must be distributed under Sections 1 and 2 above); and, if the work is an executable linked with the Library, with the complete machine-readable "work that uses the Library", as object code and/or source code, so that the user can modify the Library and then relink to produce a modified executable containing the modified Library. (It is understood that the user who changes the contents of definitions files in the Library will not necessarily be able to recompile the application to use the modified definitions.)

b) Accompany the work with a written offer, valid for at least three years, to give the same user the materials specified in Subsection 6a, above, for a charge no more than the cost of performing this distribution.

c) If distribution of the work is made by offering access to copy from a designated place, offer equivalent access to copy the above specified materials from the same place.

d) Verify that the user has already received a copy of these materials or that you have already sent this user a copy.

For an executable, the required form of the "work that uses the Library" must include any data and utility programs needed for reproducing the executable from it. However, as a special exception, the source code distributed need not include anything that is normally distributed (in either source or binary form) with the major components (compiler, kernel, and so on) of the operating system on which the executable runs, unless that component itself accompanies the executable.

It may happen that this requirement contradicts the license restrictions of other proprietary libraries that do not normally accompany the operating system. Such a contradiction means you cannot use both them and the Library together in an executable that you distribute.

...

9 Appendix E: Implementation Matrix

This appendix offers estimations of complexity and importance of various aspects of JIE, and suggests a functionality subset to serve as the initial implementation goal.

This design document is very liberal in the functionality it describes. With few exceptions, all envisioned features were described in detail. As a result, a full implementation of all the features described herein dramatically exceeds the planned scope for an initial implementation. A subset of that functionality should be defined in a way that balances relative priorities with scope of effort.

The following table lists major functionality components of JIE and ranks each in terms of priority and effort. The highlighted rows define the proposed subset.

Priority:

A – Mandatory

B – Desired

C – Nice to Have
Effort:

1 – Easy (given the dependencies)

2 – Moderate effort

3 – Significant effort

4 – Lots of coffee and pizza

Priority
Effort

Basic functionality:

Detailed design
A
3

Sourcecode transformation mechanism
A
4

Interface with Java parsing tool
A
4

Context parameters
A
2

XML DTD detailed definition
A
2

Interface with XML parser
A
3

Global type information
B
4+

Opportunities:

Method (Entry/Exit)
A
1

Nominal Method (Entry/Exit)
A
1

Class (Entry/Exit)
B
1

Class Instantiation
A
2

Wait Set Operation
A
2

Field Read
A
2

Field Write
A
2

Exception Throw
C
1

Exception Catch
C
1

Nominal Basic Block
A
3+

Generic static filters:

Package
A
1

Class
A
1

Method
A
1

Class visibility
C
2

Method visibility
C
2

Excluded JIIDs
B
3

Generic dynamic filters:

Enable/Disable
B
2

Once Only
B
2

Every N Times
C
2

Minimum Time Interval
C
2

Actions:

Action Template
A
3

Write to Log
B
1

Application wrappers:

Command-line application
A
1

GUI application
A
4

10 Bibliograpgy

Note: On-line resources are included in this section only if it was inappropriate, for stylistic reasons, to include them in the main text. It is assumed that on-line resources will be accessed from this document mainly when it is in electronic form, and in that case in-text links are preferable.

[ANTLR-REF] Terence Parr, “ANTLR Reference Manual”, http://www.antlr.org/doc/
[CCCT] German National Research Center for Information Technology, “Catalog of Compiler Construction Tools”, http://www.first.gmd.de/cogent/catalog/
[CFCI] David Muir Sharnoff et al., “Catalog of Free Compilers and Interpreters”, http://www.idiom.com/free-compilers/
[FLANAGAN] David Flanagan, “Java in a Nutshell”, O’Reilly, May 1997

http://www.oreilly.com/catalog/javanut2/ (table of contents and general information)

[GAGNON] Étienne Gagnon, “SableCC, an Object Oriented Compiler Framework”, School of Computer Science, McGill University, March 1998, http://www.sable.mcgill.ca/sablecc/#Documentation
[GAMMA] Erich Gamma at al., “Design Patterns, Elements of Reusable Object-Oriented Software”, Addison Wesley, 1994

[HOFSTADTER] Douglas Hofstadter, “Gödel, Escher, Bach – an Eternal Golden Braid”, Basic Books, 1979

[JAVA-LANG] James Gosling et al, “The Java™ Language Specification”, Addison Wesley Longman, 1996

http://java.sun.com/docs/books/jls/ (full content available on-line)

[JAVA-INNER] Sun Microsystems, Inc. “Inner Classes Specifications”, February 1997

http://java.sun.com/products/jdk/1.1/docs/guide/innerclasses/spec/innerclasses.doc.html
[XML] World Wide Web Consortium, “Extensible Markup Language (XML) 1.0”, February 1998,

http://www.w3.org/TR/REC-xml
[XML-NAMES] World Wide Web Consortium, “Namespaces in XML”, January 1999,

http://www.w3.org/TR/REC-xml-names

� Type descriptions based on � REF JAVA_LANG \h ��[JAVA-LANG]� where possible.

� For inner classes, after the package name ‘$’ is used as a separator instead of ‘.’ (as specified in � REF JAVA_INNER \h ��[JAVA-INNER]�).

� For named local classes (block-scoped), an illegal identifier of the form “line_col_ClassName"

where the class declaration starts on line line column col. This is a slight variation on � REF JAVA_INNER \h ��[JAVA-INNER]�.�For anonymous classes, same as the above using “_anonymous_” as the class name.

� For constructors, same as the class identifier. �For static initializers, the illegal identifier “*static-initializer@line#column*”. �For instance initializers, the illegal identifier “*instance-initializer@line#column*”. �For field initializers, the illegal identifier “*field-initializer@line#column*”.

� This does not provide a way to distinguish overloaded methods.

� And, non-critically, the JDK 1.2 strictfp keyword

� This was acknowledged by one of JavaCC’s authors, in e-mail communication.

� The mailing list count estimates the number of messages on the product’s support mailing list

� Numbers in parenthesis refer to JavaCC, which is relevant to both of the first columns.

� Due to newly introduced enforcement of method size limit (64K). This problem was discovered and reported by me during this evaluation. According to the author, it will be resolved by the time JIE reaches implementation stage.

� Here and in other opportunities that deal with methods, constructors and static initializers are handled similarly.

� Instantiation of an array of classes is handled in the same fashion, with obvious syntactical adaptation.

� The “?:” conditional expressed is used to guarantee that beforeCreation_CLASS() is called before the instantiation. The call is made during the actual expression evaluation. This is necessary to make sure it’s called at the correct time (just before and after creation), and only if the new expression is actually evaluated (e.g., the new expression may itself be inside a “?:” conditional operator).

� Method identification is done by method name alone. It is assumed that no class introduces additional overloaded versions of these methods that differ only by parameter type.

� It’s not locally known what’s the type of the switch expression. However, it so happens that all possible types can be safely converted to int. The switch label values require conversion as well.

� Note the evaluation of EXPRESSION occurs after the basic block exit action. Resolving this requires global type information.

� Based on discussion and general impressions. This is rather volatile.

1/39

