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This paper shows how to generate from a short random seed a long sequence of pseudorandom 
numbers which is cryptogrgraphically strong in the sense that knowing some sequence elements 
cannot possibly help the cryptanalyst to determine other sequence elements. The method is based on 
the RSA cryptosystem, and it is the first published example of a pseudorandom sequence generator 
for which such a property has been formally proved. 
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1. INTRODUCTION 

T h e  s i m p l e s t  a n d  sa fes t  c r y p t o s y s t e m  is u n d o u b t e d l y  t h e  o n e - t i m e  pad ,  i n v e n t e d  
b y  G.S.  V e r n a m  in 1917 (see [1, 2] for  m o r e  de ta i l s ) .  I t s  s e c r e t  k e y  is a long  
s e q u e n c e  of  r a n d o m l y  c h o s e n  bi ts .  A c l e a r t e x t  is e n c r y p t e d  b y  X O R i n g  i t s  b i t s  
w i t h  a n  in i t i a l  s e g m e n t  o f  t h e  key ,  a n d  t h e  r e s u l t a n t  c i p h e r t e x t  is  d e c r y p t e d  b y  
X O R i n g  i t s  b i t s  a g a i n  w i t h  t h e  s a m e  s e g m e n t .  E a c h  s e g m e n t  is d e l e t e d  a f t e r  a 
s ingle  use ,  so t h a t  t h e  k e y  is g r a d u a l l y  c o n s u m e d  (see F i g u r e  1). I t  is  e a s y  to  show 
t h a t  w i t h o u t  k n o w i n g  t h e  r e l e v a n t  s e g m e n t  of  t h e  key ,  a c r y p t a n a l y s t  c a n n o t  
d e t e r m i n e  t h e  c l ea r t ex t ,  a n d  t h u s  t h e  s y s t e m  is s e c u r e  in  t h e o r y  as  wel l  a s  in  
p rac t i ce .  

T h e  m a i n  d r a w b a c k  o f  o n e - t i m e  p a d s  is  t h e  h u g e  k e y  w h i c h  h a s  to  be  g e n e r a t e d ,  
d i s t r i b u t e d ,  a n d  s t o r e d  b y  t h e  c o m m u n i c a t i n g  p a r t i e s  in  c o m p l e t e  sec recy .  I n  
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cleartexts: 0 1 1 0 0 1 0 0 0 1 1 
key: 0 1 0 0 1 0 1 1 0 1 0 

ciphertexts: 0 0 1 0 1 1 1 1 0 0 1 

Figure 1. 

practice, this truly random key is replaced by a pseudorandom running key 
derived during the encryption/decryption process from an initial seed by a 
sequence generator such as a shift register with nonlinear feedbacks. The seed 
{which is a relatively short randomly chosen number describing the initial state 
of the sequence generator) is the only secret element in this scheme, and it can 
be used in the encryption of an almost unbounded number of cleartexts. 

In order to be cryptographically strong, the pseudorandom running key must 
be unpredictable. The main problem is to guarantee that even when the crypt- 
analyst obtains long segments of the running key (by XORing together known 
cleartext/ciphertext pairs), he should have no knowledge whatsoever about any 
other segment. Note that the long running key is deterministically generated 
from the short seed, and thus pure information-theoretic ambiguity arguments 
become inapplicable once the cryptanalyst obtains enough segments. 

The notion of "cryptographic knowledge" of a value is notoriously slippery, 
and it can be defined in any one of the following forms. 

(1) Immediate knowledge--the ability to retrieve the desired value from 
memory. 

(2) Computed knowledge--the ability to compute the desired value within 
certain time and space complexity bounds. 

(3) Partial knowledge--the ability to sharpen the a priori probability distribu- 
tion of candidate values (e.g., to change a uniform initial distribution into 
one in which a particular value is the most likely candidate). 

The analysis of pseudorandom sequences in this paper is based on definition 
(2). Consequently, we do not analyze the statistical biases and autocorrelations of 
our sequences, and we do not consider the possibility of obtaining partial infor- 
mation about some sequence elements (e.g., that their sum is always even). This 
is admittedly a simplified version of reality, but it is the only one about which we 
were able to get concrete results. One of the most challenging open problems of 
cryptography is to develop a unified theory of knowledge that analyzes the 
information/complexity trade-offs of cryptographic systems--how much infor- 
mation can be gained by investing a given amount of computational resources. 

While one can argue heuristically that almost any sequence generated by a 
complicated mnltipass randomizing procedure is likely to be cryptographically 
secure under definition (2), the challenge is to generate a sequence which is 
provably secure. At this stage, complexity theory lacks tools for proving the 
absolute difficulty of computational tasks; thus a more realistic goal is to develop 
pseudorandom sequence generators which are secure modulo some plausible but 
unproved assumption (such as NP ~ P, the existence of one-way functions, or 
the difficulty of factoring integers). By clearly identifying the fundamental sources 
of security and insecurity, such an analysis can put cryptocomplexity on a firmer 
theoretical basis even when the underlying assumptions are not known to be true. 
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2. SCHEMES BASED ON ONE-WAY FUNCTIONS 

The purpose of this section is to illustrate the trickiness of form~ 1 proofs of 
security by analyzing some simple schemes based on the notion of one-way 
functions. To simplify the analysis, we axiomatically assume that  these functions 
are permutations on some finite universe U, that  they are everywhere easy to 
compute, and that they are everywhere difficult to invert (more details on this 
axiomatic approach can be found in [7]). 

Given a one-way function f, we can generate a long pseudorandom sequence of 
elements in U by applying f to some standard sequence of arguments derived 
from the initial seed S. This sequence can be as simple as 

S , S + I , S + 2  . . . .  

and the cryptanalyst is assumed to know l and  the general nature of the sequence, 
but not S. The values o f f ( S  + i) are considered as indivisible objects rather than 
bit strings, since we want to avoid problems of partial knowledge about them. 
Note that  unlike the output of shift registers with feedbacks, these sequences do 
not suffer from error propagation problems, since each element is computed 
separately from its index and the seed. 

The difficulty of extracting S from a single value of f ( S  + i) is guaranteed by 
the one-way nature of f. However, without further assumption on f, one cannot 
formally prove that  S cannot be extracted from pairs  of values (such as f (S), f (S 
+ 1)). Furthermore, f m a y  be degenerate in the sense that  some of its values may 
be directly computable from other values without computing S first. A simple 
example which shows that  good one-way functions can be misused as sequence 
generators is supplied by the RSA (Rivest-Shamir-Adelman) encryption func- 
tion [5]: 

EK(M) = Mg(mod N). 

rhis function is believed to be one-way with respect to the key K when the 
message M and the modulus N are known, but its application to the standard 
sequence 

M =  2, 3, 4, 5, 6, . . .  

generates the sequence 

2K(mod N), 3K(mod N), 4g(mod N), . . .  

in which the third element is just the square (mod N) of the first element, the 
fifth element is just the product (mod N) of the first two elements, and so forth. 
This multiplicative degeneracy makes the sequence insecure even though the 
secret seed K remains unknown. 

A variant of this scheme avoids the problem of multiplicative degeneracy by 
using the sequence of primes as the standard sequence: 

M- -  2, 3, 5, 7, 11 . . . . .  

Is the generated sequence secure? We conjecture that  it is, but without knowing 
all the potential degeneracies of the RSA function, we are unable to prove any 
formal equivalence between the difficulty of computing K from 2 g (mod N) and, 
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for example, the difficulty of computing 5 K (mod N) from 2 K (mod N) and 3 K 

(mod N).  
Another  way (proposed by [4]) in which long sequences may  be generated from 

one-way functions is to i terate their  application to the secret  seed S. Th e  resul tant  
sequence 

f ( S ) ,  f 2 ( 8 )  = f ( f ( S ) ) ,  f 3 (S )  = f ( f ( f ( S ) ) ) ,  . . .  

is easy to extend in the forward direction (by applying f), but hard to extend 
backwards (by applying f - l ) .  If we pick two secret  seeds, R and T, generate the 
two sequences fi(R) and fi(T), and XOR pairs of their  elements in opposite 
directions 

f l (R )  ~fn(T) ,  f2(R) (~fn- l (T) , . . . ,  fn(R) ~ f l ( T ) ,  

we get a sequence which seems to be hard  to extend either forwards or backwards. 
This  can be formally proved in the following special case. 

L~.MMA 1. I f  f is a one-way function, then a new element of the sequence 
cannot be computed from a single known element. 

PaOOF. By contradiction. Assume tha t  for some i # j ,  fi(R) @ fn-i(T) can be 
computed from fJ(R) • f"-J(T) for all choices of the unknown seeds R and T. 
Our goal is to show tha t  given an arbi t rary S, f- l(S) can be easily computed,  and 
thus  f is not  a one-way function. 

Without  loss of generality, we assume tha t  i < j.  We pick a random T, and 
compute  S (~ f"-J(T). Since f is invertible, there  is some R (which is hard  to 
compute) such tha t  S -- fJ(R). By assumption, from S • f"-J(T) = f~(R) 
f"-J(T), we can compute  fi(R) • f"-i(T) = fi-J(S) • f"-i(T). Knowing T, we can 
compute  fn-i(T) and thus isolate fi-i(S). Since j - i is positive, we can easily 
apply f j  - i - 1 t imes to fi-i(S) to get 

fi-i-l(fi-J(S)) = f-l(S),  

and this is the desired result. Q.E.D. 

Unfortunately,  the XOR operator  which scrambles the two sequences together  
makes it impossible to prove any formal result  in more complicated cases. For  
example, we do not  know how to prove tha t  f2(R) • f2(T)  cannot  be computed  
from fi(R) (D f3(T) and f3(R) • fl(T), if we only assume tha t  f is hard  to invert. 

In view of these difficulties, it is quite remarkable  tha t  for one part icular  
pseudorandom sequence generator  based on the RSA function, we can formally 
prove tha t  no mat te r  how many  sequence elements the cryptanalyst  gathers, the 
task of computing one more element  remains just  as difficult. This  scheme is 
described in the next  section. 

3. THE PROPOSED SCHEME 

The  RSA public-key encryption function with modulus N maps the secret  
cleartext  M under  the publicly known key K to M g (mod N).  The  corresponding 
decryption function recovers the cleartext  by taking the K t h  root  of the ciphertext  
(mod N).  The  cryptographic security of the RSA cryptosystem is thus equivalent 
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by definition to the difficulty of taking roots mod N. When N is a large composite 
number with unknown factorization, this root problem is believed to be very 
difficult, but when the factorization of N (or Euler's totient function ¢p(N)) is 
known and K is relatively prime to ¢p (N), there is a fast algorithm for solving it. 

Each pseudorandom sequence generator consists of a modulus N and some 
standard, easy-to-generate sequence of keys K1, K2 . . . . .  such that  (p (N) and all 
the Ki's are pairwise relatively prime. As far as we know, the difficulty of the root 
problem is determined by the choice of N but not by the choice of the Ki's, and 
thus almost any segment of odd primes (e.g., 3, 5, 7, 11 . . . .  ) can be used as the 
standard sequence. 

In order actually to generate a pseudorandom sequence of values R1, R2 . . . . .  
the two parties choose a random seed S and use their knowledge of cp (N) to 
compute the sequence of roots: 

RI = S1/K'(mod N), R2 = S1/K2(mod N), . . . .  

1'he security of this scheme depends only on the secrecy of the factorization of N, 
and thus we can assume that  everyone (including the cryptanalyst) knows N, S, 
and all the Ki's. Our goal is to prove that  the complexity of the root problem 
remains unchanged even when some of the other roots of the same S (mod N) 
are given for free. Without loss of generality, it is enough to consider the following 
pair of problems. 

(1) Given N and S, compute R1. 
(2) Given N, S, Re, . . . ,  Rl, compute R1. (The sequence of Ki's and the value of 

I are assumed to be fixed parameters in these problems). 

Since the difficulty of the root problem fluctuates wildly as N goes from 1 to 
infinity, we would like to establish the equivalence between the security of the 
RSA cryptosystem and the complexity of our pseudorandom sequences for each 
value of N rather than asymptotically. To deal with these finite problems, we 
have to consider their Boolean circuit complexities [6]. Unfortunately, for each 
particular N, there exists a small circuit that  stores the factorization of N and 
uses it to solve all the root problems mod N efficiently. To overcome this 
difficulty, we lump together all the moduli N of the same binary size n and claim: 

THEOREM 1. There is a fixed polynomial P(l, n) such that for any number l 
of known roots, for any size n of the modulus, and for any circuit Cl, n that solves 
all the instances of problem (2) of size n, there exists another circuit C', of size 
at  most [ Ct., [ + P(1, n) that solves all the instances of problem (1) of size n. 

The peculiar property of the RSA encryption function that makes the proof of 
this theorem possible is: 

LEMMA 2. There is a polynomial-size circuit that computes from N, Aa . . . . .  
At, Sa'(mod N) . . . . .  Sa'(mod N) the value of Sa°(mod N) where Ao = gcd(A1, 
. . . .  At). 

PROOF. By Euclid's algorithm, there are (easy-to-compute) integers B1 . . . . .  
Bt such that 

Ao= AIB~ + . . .  + AtBt. 
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Consequently,  

S A° = ( s A ' )  B' . . .  (~z)St(mod N),  

and these exponentiations can be carried out  efficiently by the me thod  of repeated  
squarings. Q.E.D. 

COROLLARY. I f  the Ai's are relatively prime, then S itself can be computed 
from its l powers by a circuit of polynomial size. 

PROOF OF THEOREM 1. We show how to construct  C~ from Cl,n. Given N, S, 
and all the Ki, we define T = sg2""K'(mod N). Since R~ = s~/K'(mod N),  T is also 
equal to RK'K='"K'(mod N). The  following 1 - 1 numbers  can be easily computed 
as powers of S: 

(2) T I/K= -~ R g'g3"''Kz = SK"'g'(mod N) 

(l) T 1/K' = R K'~'''K'-' = SX2K'-'(mod N}. 

The  values of N, T, and (2) . . .  (l} can be fed into Ct,, {with T playing the role of 
the seed S), and the output  of this circuit is: 

(1) T 1/K' = R~"'g'(mod N). 

Since the Ki's are pairwise relatively prime, the gcd of the I exponents  of R1 in 
(1) . . .  (1) is 1, and thus by the corollary of Lemma 2, we can easily compute  R1 
itself. All the computat ions of powers in (2) . . .  (l) and the final extract ion of R1 
can be done by a circuit whose size is some polynomial  in I and n, and thus the 
size of C;, does not  exceed ] Ct,n I + P(1, n}. Q.E.D. 

Practical  cryptographic systems must  be difficult to break almost everywhere,  
since the existence of an efficient cryptanalyt ic  algorithm which can decipher one 
percent  of the messages for one percent  of the keys is enough to make the system 
useless. T h e o r e m  1 is not  strong enough in the context  of cryptocomplexity,  since 
it does not  rule out  the possibility tha t  the RSA function is secure almost 
everywhere  while our pseudorandom sequence generator  is sometimes (i.e., for 
many  S} breakable. To  show tha t  this situation is impossible, we have to consider 
circuits Cz,, which are not  perfect. For  each N of size n, we define g(N} to be the 
fraction of seeds S for which Cl,, computes  the correct  value of R~. This  success 
rate depends on the circuit, and its value is typically 1 for easily factorable N. We 
can now use (for the first time} the randomness  of S in order  to prove: 

THEOREM 2. There is a fixed polynomial P(1, n} such that for any circuit Ct,n 
that solves some of the instances of problem (2) of size n with success rate g(N),  
there exists another circuit C', of size at most ] Cl,n ] + P(1, n) that solves some of 
the instances of problem (1} of size n with success rate at least g(N).  

PROOF. The  proof  is very similar to the proof  of T h e o r e m  1. The  new 
observation we need is tha t  when K2 . . . . .  Kt and N are fixed, the mapping of S 
values to T values represented by T = sK~'"g'(mod N} is a permutat ion.  Conse- 
quently, a randomly chosen S has a probabil i ty o f g ( N )  to yield a T for which the 
oracle Cl,~ answers correctly. Note  tha t  while the numbers of easy seeds in 
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problems (1) and (2) are guaranteed to be similar, their identities may be 
completely different. Q.E.D. 

The condition that each Ki must be relatively prime to cp (N) is required only 
in order to guarantee the existence of the appropriate root (e.g., square roots 
cannot be extracted from seeds S which are quadratic nonresidues mod N). 
However, if the seeds are chosen in such a way that the roots are known to exist, 
the proof of Theorem 1 applies to arbitrary Ki's. In particular, it proves that the 
knowledge of square roots (mod N) cannot possibly aid the cryptanalyst in 
computing other roots. This is an apparent contradiction to Rabin's result [3] 
that the ability to extract square roots implies the ability to factor and thus 
extract arbitrary roots. However, in Rabin's model, S is chosen by the cryptana- 
lyst, whereas in our model, S is chosen by the users of the cryptosystem. Even 
though S is a randomly chosen number in both models, this seemingly insignifi- 
cant difference enables the cryptanalyst to factor N in Rabin's model, but  leaves 
him completely in the dark in our model. 

The pseudorandom sequence generator we propose is mainly of theoretical 
interest, since the modular exponentiation of huge numbers is too time-consuming 
for most practical applications. An interesting open problem is to make the proof 
technique developed in this paper applicable to faster cryptosystems and one- 
way functions in order to create more practical sequence generators with guar- 
anteed complexity. 
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