
AN EFFICIENT SIGNATURE SCHEME BASED ON QUADRATIC EQUATIONS 

H. Ong 
Mathematics Department 
University Frankfurt 

6000 Frankfurt am Main 
Germany, FR 

C.P. Schnorr I 

Mathematics Department 
University Frankfurt 

6000 Frankfurt am Main 

Germany, FR 

A. Shamir 2 

Applied Mathematics Department 
The Weizmann Institute of Science 

Rehovot 76100 
Israel 

ABSTRACT 

Electronic messages, documents and checks must be 

authenticated by digital signatures which are not 

forgeable even by their recipients. The RSA system 

can generate and verify such signatures, but each 

message requires hundreds of high precision modu- 

iar multiplications which can be implemented 

efficiently only on special purpose hardware. In 

this paper we propose a new signature scheme which 

can be easily implemented in software on micropro- 

cessors: signature generation requires one modular 

multiplication and one modular division, signature 

verification requires three modular multiplications, 

and the key size is comparable to that of the RSA 

system. The new scheme is based on the quadratic 

equation m = s~ + ks~ (rood n) , where m is the 

message, s I and s 2 are the signature, and k 

and n are the publicly known key. While we cannot 

prove that the security of the scheme is equivalent 

to factoring, all the known methods for solving 

this quadratic equation for arbitrary k require 

the extraction of square roots modulo n or the 

solution of similar problems which are at least as 

hard as factoring. A novel property of the new 

scheme is that legitimate users can choose k in 

such a way that they can sign messages even without 

knowing the factorization of n , and thus everyone 

can use the same modulus if no one knows its 
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factorization. 

Remark: The scheme is an improved version of the 

signature scheme described in "Signatures Through 

Approximate Representations by Quadratic Forms" 

by Ong and Schnorr 5. It is mathematically simpler, 

computationally faster and cryptographically 

comparable to the security of the original scheme. 

i. INTRODUCTION 

The communication revolution made possible by the 

home computer and the global telecommunication 

networks is likely to change the way we bank, shop, 

work, vote, access information, send mail, conduct 

business, and do almost everything else. To get 

this revolution into high gear, methods must be 

found to ensure the privacy, integrity and authen- 

ticity of the electronic messages. The most 

promising approach to the problem was proposed in 

Diffie and Hellman's seminal paper on public key 

cryptography in 1976. Since then, a number of 

cryptosystems have been developed and analysed, 

and the system which is currently believed to be 

the most secure is the RSA system which is based 

on the difficulty of factoring large numbers. Un- 

fortunately, this system is very slow when im- 

plemented in software, and very expensive when im- 
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plemented in hardware with standard components. 

Until VLSI implementations become available, the 

practical uses of the RSA system will be severely 

limited. 

The purpose of this paper is to describe a novel 

signature scheme which is somewhat related to the 

RSA system but which is hundreds of times faster. 

It can be easily implemented in software on micro- 

processors, and it is ideally suited to cheap, 

mobile items such as smart cards, identity tags, 

cellular telephones, data collection terminals, 

portable computers, and remotely controlled devices, 

where authentication and signature schemes are 

essential. If it can be shown to be secure (or at 

least if it withstands concentrated cryptanalytic 

attack for a reasonable period), it can be a 

truely practical and cost-effective solution for 

almost any unforgeable authentication problem. 

2. THE SIGNATURE SCHEME 

When Alice joins the conmlunication network, she 

publishes a key consisting of two parts: a multi- 

plier k and a modulus n. Both parts are large 

numbers (at least i000 bits long), and n is a com- 

posite number whose factorization is unknown 

(except possibly to Alice). The messages m are 

numbers in the range O ~ m < n , and their sig- 

natures are pairs of numbers sl, s 2 in the same 

range. The signature is considered valid if the 

following modular equation holds: 

(I) m = s~ + k s~ (roods) . 

If Bob knows k and n, he can easily verify Alice's 

signature by performing three modular multiplica- 

tions and one modular addition. 

Unlike the RSA system, signatures are not uniquely 

associated with messages. Since the number of 

possible messages is n while the number of possible 

2 
signature pairs is n , each message has about n 

different signatures. However, the probability that 

a randomly chosen pair sl, s 2 will be a valid sig- 

nature of a given m is negligible, and thus the 

multiplicity of signatures does not imply that 
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they are easy to find. 

How does Alice choose her public key? She first 

chooses the modulus n as a large composite number 

which is difficult to factor. By using a probabi- 

listic primality testing algorithm on random in- 

tegers with at least 500 bits, Alice can find 

after a few hundred tests two numbers p and q 

which are almost certainly primes. The product n 

of p and q is easy to compute, but even the fastest 

known factoring algorithm on the fastest available 

computer will take millions of years to factor it. 

Efficient implementations of this process can 

compute n within a few hours on a typical micro- 

computer. Such an overnight initialization period 

is acceptable in most applications, but if the 

user cannot afford it, there is & faster alter- 

native: If a trusted third party (the NBS?) com- 

putes n and then erases p and q, no one knows the 

factorization of n and thus everyone can use it as 

a standard modulus. 

The secret that helps Alice solve the quadratic 

equation (i) for any m is a number u which is 

relatively prime to n and which satisfies: 

2 
(2) i + ku = 0 (modn) 

It is very easy to compute k from u, but very 

difficult to recover u from k since square roots 

cannot be extracted without knowing the factori- 

zation of the modulus n. Alice follows the easy 

direction during the key generation phase by 

picking u at random and computing k as: 

(3) k = -I/u 2 (mod n) . 

Once k is published, Bob (or anyone else) cannot 

compute u, and thus cannot follow the signature 

generation method that Alice is using. 

Since u is relatively prime to n, any pair of 

numbers s I , s 2 between O and n-i can be expressed 

as 

(4) s I = t+ r (rood n) , s 2 = t- u (rood n) 

for appropriately chosen values of t and r 

-i 
(use t=u - s 2 (rood n) , r = s I - t (rood n)) . 



If s I and s 2 are a solution of equation (I), we can 

substitute the expressions in (4) into (I) and get: 

(5) m = (t+ r) 2 + k(tu) 2 (mod n) 

which can be simplified to 

(6) m = t2(I +ku 2) + t(2r) + r 2 (modn) . 

By the definition of k, the coefficient of t 2 is 

zero, and thus (6) becomes a linear equation in t 

which can be easily solved: 

(7) t = (~- r)/2 (rood n) . 
r 

Substituting this value of t into (4), we get the 

fundamental equations 

(8) s I = (~+r)/2r (moan) , s 2 = (~-r)r " u/2 (modn) 

Alice can thus generate signatures of m by choosing 

a random r and evaluating (8), using one modular 

multiplication, one modular division, two modular 

additions/subtractions, and two trivial divisions 

by 2. If r is not relatively prime to n, m/r (mod n) 

may not be defined, but if all the factors of n are 

large Alice is unlikely to choose such an r. 

The relationships between messages and signatures 

are sum~larized by the following lemma: 

Lemma i: Let ~* be the set of numbers between O 
n 

and n which are relatively prime to n, and let m be 

a fixed element in ~* . Then the set of signatures 
n 

of m is in i-i correspondence with the set of values 

of (8) as r ranges over ~* . 
n 

Proof: For each r6 2Z* , (8) is clearly a signature. 
n 

For every signature, there are t and r satisfying 

(6), but if r~ 2Z* the right hand side of (6) is 
n 

not in ~* , which contradicts the assumption 
n 

on m. Since s I- s2/u = r (mod n) , only one value 

of rih ~* can correspond to each signature. 
n Q.E.D. 

Remarks: (i) By using a random r, Alice can choose 

an arbitrary signature of m with uniform proba- 

bility distribution, and is not restricted to sig- 

natures of some special form. 

(ii) If two different messages are signed with the 

same r, u can be computed from the signatures and 

thus Alice must choose a new random r for each 

message. 

(iii) Messages which are not relatively prime to n 

should not be signed. However, only m = O should 

be explicitly excluded since any other message of 

this type is unlikely to occur. 

The various components of the signature scheme can 

be summarized as follows: 

Key Generation: 

I. Pick a large composite number n. 

2. Pick a random u which is relatively prime to n. 

3. Compute k = -I/u 2 (mod n) . 

4. Publish n,k, and keep u secret. 

Signature Generation (m # 0): 

I. Pick a random r which is relatively prime to n. 

2. Compute s I = (m/r+r)/2 (mod n) 

s 2 = (m/r-r) • u/2 (mod n) 

Signature Verification: 

2 2 
i. Compute s I + k. s 2 (mod n) . 

2. If the result is m, the signature is valid. 

3. SECURITY CONSIDERATIONS 

The security of the scheme relies on Bob's in- 

ability to gain information from Alice's signatures 

(proved in this section) and on the difficulty of 

solving the binary quadratic equation (i) (dis- 

cussed in the next section). 

Bob cannot possibly discover the factorization of 

n by analyzing large collections of (m,sl,s 2) 

triplets produced by Alice, since even Alice may 

be unaware of it and thus cannot reveal it acci- 

dentally. From her point of view, all her actions 

consist of random number generation and the evalu- 

ation of simple formula, and thus they cannot lead 

to the factorization of n if factoring is diffi- 

cult. 

The next cryptanalytic attack is related to 

equations (8). Given h message-signature triplets 

i i i  
(m ,Sl,S 2) produced by random r i values, Bob gets 

2h equations in h+ I variubles (u and the rl). 

Could he manipulate these equations in some way 

and compute some of these ~knowns? The following 
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theorem answers this question negatively even when 
i 

the m are chosen by Bob or when the same message 

is repeatedly signed: 

Theorem 2: Any algorithm for computing u from ran- 

dom signatures of messages of its choice can be 

transformed into a probabilistic factoring algo- 

rithm with similar complexity. 

Proof: When n has at least two distinct odd factors, 

the number -i/k has at least four distinct square 

roots. By Lemma i, all these roots create the same 

set of signatures (in a different order, but with 

the same probability distribution) when r varies and 

m is relatively prime to n. The algorithm that 

analyzes the signatures thus cannot distinguish 

between the roots and cannot identify the root u 

which is actually used in the signature generation 

process. If this root u has been chosen at random 

then the probability that the root u' reported by 

the algorithm satisfies u' # ±u (mod n) is at least 

one half, and in this case gcd(u-u',n) is an non- 

trivial factor of n. 

In order to factor a given number n, Bob picks a 

signature scheme by choosing u at random and com- 

puting the appropriate k. Bob then signs the 

messages requested by the algorithm for the key 

(k,n) , and compares the u' reported by the algo- 

rithm with the u he knows. By repeating this pro- 

cess sufficiently many times with the same n but 

different u values, n will be factored with arbi- 

trarily high probability of success. 
Q.E.D. 

i 
Remarks: (i) If Bob could compute some r value, 

he could substitute it into the expression for s 2 

in (8) and isolate u. The r i values are thus as 

hard to compute as u. 

(ii) The theorem can be easily extended to the case 

of an algorithm that succeeds for only some of the 

k, provided that the fraction of these k is non 

negligible. 

(iii) In Rabin's signature scheme an opponent can 

factor n by analysing the signatures of specific 

messages. In our scheme the factorization of n and 

the secret parameter u cannot be revealed by chosen 

message attacks. 

Since Bob cannot benefit from Alice's signatures 

and cannot use her method for solving equation (i), 

he must come up with an alternative way of solving 

this equation. The known methods for solving binary 

quadratic equations are summarized in the next 

section. 

2 + ks~ = m (mod n). 4. THE COMPLEXITY OF SOLVING s I 

Equation (i) has a number of symmetries and closure 

properties, which seem to be useful both in proofs 

of security and in cryptanalysis. They are based on 

the following facts: 

(i) The roles of k and m in equation (i) can be 

interchanged, since a signature s I, s 2 of message m 
-I 

with key (k,n) yields a signature sls 2 (mod n) , 
-i 

s 2 (mod n) of message -k with key (-m,n). 

(ii) Signatures sl, s 2 of m' and s~, s 2 of m" with 

the same key (k,n) yield a signature sl, s 2 of 

m = m'm" (mod n) by composition (see [10], [ii] 

for definitions and background material): 

(9) 

The 

identity 

(10) (s I'2 + ks;2)(s~2 + ks;2) = (SlS1_ks~s;)2, ,, 

,, , ,, 2 
+ k(s~s 2 + S2Sl) (mod n) 

! . ! ,, = g ,, ! . 

s I =SlS 1 - ks2s 2 (modn), s 2 SlS 2+ s2s I (modn) 

validity of the signature of m follows from the 

(iii) For a fixed signature s~ s 2 of m'6 ZZ* # t n 
implies that the signatures s~, s; of equation (9) 

m are in i-i correspondence with the signatures 

sl, s 2 of m=m'm '' (mod n), since the system of 

linear equations is non singular with determinant 
,2 ,2 , 

s I + ks 2 = m (mod n). This proves that for m6~* 
n 

the number of solutions of equation (I) is indepen- 

dent of m even when -k is a quadratic non residue 

mod n. 

(iv) An important special case of properties (i) 

and (ii) is that a signature sl, s 2 of m with (k,n) 

yields a signature vs I (mod n) , vs 2 (mod n) of 
2 

v m (mod n) with key (k,n), and a signature 
-1 

Sl, v s 2 (mod n) of m with key (v2k(modn),n), for 

any v 6 2Z* . 
n 

A simple consequence of these properties is that 

the signature scheme has uniform complexity: Either 
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all or almost none of the pairs of messages m and 

multipliers k can be broken. More precisely, we 

prove: 

Theorem 3: Any T(n)-time algorithm which for each n 

solves equation (I) for an £-fraction of the 

messages m and multipliers k can be transformed 

into a probabilistic O(T(n)/e) time algorithm which 

with probability ~ 1/2 solves equation (i) for 

all the n, m and k. 

Proof: By properties (i) (ii) and (iii), it is 

possible to change In into any other m, and k into 

any other k, with uniform probability distribution 

so that each signature s I , s 2 of m with (k,n) can 

be changed back into a signature s I , s 2 of m with 

(k,n) in a fixed number of arithmetic operations. 

By repeating this randomization of m, k into m, k 

at least i/E times, a valid signature is obtained 

with probability _> (l-(1-e) I/e) _> 1-e -I > I/2 . 

Q.E.D. 

Equation (i) is a special case of the general bi- 

nary quadratic equation 

2 2 
(Ii) als I + a2s 2 + a3sls 2+ a4s I + a5s 2+ a 6 =O (rood n), 

but in fact the two equations have similar com- 

plexity: 

Lemma 4: Any polynomial time algorithm for solving 

equations of type (I) can be transformed into a 

probabilistic polynomial time algorithm for solving 

equations of type (ii). 

Proof: There is a straightforward linear substi- 

tution to s I, s 2 which transforms almost every 

equation (11) into an equation of type 

-- --2 -- --2 

+ a2s 2 + a 6 = O (mod n) als I o 

Multiplication with ~i (mod n) yields an equation 

of type (i). If the linear substitution is unde- 

fined we either find a factor of n, since some 

coefficients are not relatively prime to n, or 

equation (11) is transformed into an equation which 

is linear in at least one variable. In the latter 

case equation (ii) is easy to solve. If n has been 

factored we can solve equation (ii) by Rabin's 

probabilistic polynomial time square rooting algo- 

rithm. Q.E.D. 

The main reason we believe that signatures cannot 

be forged in our scheme is that all the known 

methods for solving binary quadratic equations 

modulo n are tantamount to factoring. The simplest 

method is to fix one of the variables s, and solve 
l 

the remaining single variable equation. However, 

the computation of either s I or s 2 requires the 

extraction of a square root (mod n) which is as 

difficult as factoring n. 

Another approach might be to solve equation (I) 

over the integers, since any such solution (when 

reduced modulo n) gives a solution for the modular 

equation. However, an easy counting argument shows 

that for all m the fraction of mE [l,m o] for 
o 

which equation (1) is solvable is O(I/~), so 

for large k this method is not likely to suceed. 

The next method for solving equation (I) exploits 

the theory of quadratic forms. The group SL2(ZZ) 

of 2×2 integer matrices T with detT = i acts on 

the set of binary quadratic forms 

ax I + bxlx 2 + cx 2 = x Ax , A = b/2 

a,b,cEZZ, x = Ix1] 
LX2J 

via the transformation A--~ TtAT , where T t is 

the transpose of T. We denote these forms by 

(a,b,c). Two forms (a,b,c) and (a',b',c') are 

called equivalent if there is some T6SL2(ZZ) 

s.t. TtAT = A' Let [ (a,b,c)] be the equi- 

valence class of (a,b,c). (a,b,c) represents mE ~Z 

if there is some s 6 2Z 2 s.t. stAs = in . 

Obviously stAs = m iff s 'tTtATs ' = m 

with s ' T -I = s . Equivalent 

forms represent precisely the same elements in 2Z 

and this suggests to consider quadratic equations 

and their solutions modulo SL2(ZZ) . In the remain- 

der of the paper we restrict ourselves to forms 

(a,b,c) which are primitive, i.e. gcd(a,b,c) = 1 

and positive, i.e. a>O and have negative dis- 

criminant ~ := b 2- 4ac = -4 detA . Note that the 
2 2 

polynomial x I + kx 2 = (l,O,k) with discriminant 

-4k has these properties. Let G(~) be the set of 

equivalence classes [ (a,b,c) ] with discriminant ~. 

Theorem 5 (Gauss 1801, Art. 234-244) 

(i) G(A) forms an abelian group under composition 

of forms, the class group. 
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(2) IG(~) I = 0( l~log lal) (IG(&) I is the order 

of the group G(~)). 

(3) For two equivalent forms a transformation 

matrix T can be found in polynomial time. 

(4) The class [(1,O,k)] is the unit element of 

G(-4k). 

(5) Composition of forms can be done in polynomial 

time. 

It is important that the composition in G(~) is 

compatible with the multiplication of integers re- 

presented by the corresponding forms. That means 

if s'tA's ' m'(modn), s"tA"s '' 
tt 

= = m (mod n), and 

the composition of A' and A" yields A then we 

easily get from s', s" a vector s6 ~2 such that 
t 

s As = m'm" (mod n). In particular if 

A' = A" = [~ ~] then A = [~ ~] and s are ob- 

tained from s', s" by the formulae (9). 

The formulae of composition: A form (a,b,c) in the 

product class [(a',b',c') ][ (a",b",c") ] is obtained 

from a',b',c', a",b",c" as follows (for explana- 

tion see Lenstra 1982) 

d := gcd(a',a" , (b'+b")/2) 

Let c~,~,~f6 ZZ be such that 
(b' + b") 

(xa' + ~a" + y 2 d 
(12) a := a ' a " / d  2 

b :=b" + ~ [(~ ~T- -b'-b" Tc') mod T]a' 

c := (- ~ + b2)/(4a) 

The equivalence class [(a,b,c)] does not depend on 

the particular choice of c~,~,y . If m is represen- 

ted by (a',b',c') and m" by (a",b",c") then m'm" 

can be represented by (a,b,c) : 

(a's~ 2 + b's~s~ + c's~ 2) (a"s~ 2 + b .... s Is"2 + cs~ 2) 

2 2 
= as I + bsls 2 + cs 2 

holds for 

1 b' ' (a"s~' +~ s~) ] 
s 2 := ~ [ (a's~ +TS~)S~ + s 2 

I 's~ b' " 
(13) s I := ~ [(a +Ts~) (a"s~ +~s~)+~s~ s~]- 

b 
ys 2 

S I,s 2 are polynomials in s~, s~, s~', s~ with 

integer coefficients (note that b' =b" =b (mod2)). 

The integers a,b,c of the composed form are much 

larger than a',b',c',a",b",c". In order to keep 

numbers small it is important to reduce the com- 

posed form. The whole process of composition and 
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reduction takes O(logl~l) 2 bit operations II . 

2 2 
A ke~z observation: Xl + kx2 = m mod n can be 

solved efficiently if the order of G(-4k) is odd 

and if all prime powers in the prime decompo- 
~)i 

sition IG(-4k) I = H i Pi are small. For the pur- 

pose of this paper call IG(-4k) l t-smooth if 

maxiPi < t. Let QR m be the set of squares 

modulo m. 

Theorem 6: Let k, m be prime, k= -imod4 , -k6QR m 

and IG(-4k) l t-smooth. Then by a probabilistic 

algorithm x~ + kx~ = m (rood n) can be solved 

(with probability ~ i/2) in O(t+ log m) steps. 

(Multiplications of integers ~ n and compositions 

are counted as single steps). 

Algorithm 7: (proof of theorem 6)" 

i. solve b '2 = -4kmod4m by Rabin's probabilistic 

square root algorithm (this requires that m is 

prime and -k 6 QR m and takes O(log m) steps) . 

2. c' := (b'2+4k)/(4m) 

(then (m,b',c') has discriminant-4k) 

3. construct the sequence PI'''''Pl of odd 

primes 5. t e i := max { I) I p~_~t } i = 1,...,i 

4. (It is known that IG(-4k) I is odd for k prime, 
ei 

k = -I mod4 . Hence IG(-4k) I ~ =I Pi and 
e. 

nli=iPi 1 
[(m,b',c')] = [(l,O,k)] ) 

! g 
transform the solution s I = I , s 2= 0 of 

ms~ 2 + ' 's' + c's~ 2 b s I 2 = m into a solution 

Hi e i 

s l, s 2 of s21 ks~ m i=i P i + = (mod n) . 

ei 
(this takes < 2 • log 2N =i Pi _< 2 1 log2t < 4t 

c ompo s it ion s ) 

ei 
-(T] =i Pi - i)/2 

5. ~ := s (mod n) for I) = 1,2 . 
D M 
(this takes O(t) multiplications and one 

--2 --2 
division in ZZ* , obviously s I + ks 2 = m(modn)). 

n 
Q.E.D. 

Exploiting the ideas of the factoring algorithm of 

Schnorr and Lenstra I0, algorithm 7 can be extended 

to arbitrary multiplier-message pairs (k,m). By 

experience the class groups G(-4k) behave like 

"random abelian groups of order O(V~logk)". The 

groups G(-4k) and G(-4kv) are unrelated provided 

that kv is squarefree. In our analysis we assume 



that the fraction of "all v ~ k ~ for which 

IG(-4kv) l is t-smooth" is at least the fraction of 

"all integers ~ k (I+8)/2 which are t-smooth". The 

fraction of t-smooth integers is known from 

Theorem 8: (Canfield, Erd6s, Pomerance I'7) 

Let ~(n,v) := # {z~n : z is free of primes >v} 

then for all a, c > O: ~(nC,La)~c = ~e/(2a)+o(1)" 
n n 

Here L := exp~in nln inn and limo(1) =O . 
n n 

Solving x~ + kx~ : m (nod n) for small k. 

(i) Since IG(-4k) l is kl/2+°(1)-smooth we can apply 

algorithm 7 with t=k I/2+°(I). This solves 
2 2 

x I + kx 2 = m (mod n) provided that m is prime, 

-k6 QR m and [(m,b',c')] 6G(-4k) has odd order. 

These conditions on m can be satisfied by applying 

a few random transformations to m. Hence equation 

(i) can be solved in k I/2+°(I) steps. 

(ii) We show how to transform a triple of solutions 

s~,s~ of s~ 2 + kvs~ 2 = m (nod n), 

- ~ -2 -2 ~ 
sl,s 2 of s I + vs 2 = m (mod n) and sl,s 2 of 

~2 ~2 
s I + s 2 = m (mod n) into a solution of 

2 2 - - 2 )2 
s I + ks 2 = m (mod n): Since (s2/s I) - m(i/s I = 

= -I/v (nod n) and (s~/s~)2-m(i/s~)2=-kv(modn) 
composition of s2/sl, i/s I and s~/s~, i/s~ 

- s,~ 2 - yields a solution sl,s ~ of ms~ 2 = k (modn). 

Since (~i/~2)2 - m(i/~2 )2 = -I (mod n) compo- 

sition of s[,s~ and sl/s 2 , i/~ 2 yields a solu- 

2 
tion s I''' , s 2''' of s 2'" -ms~' = -k (modn). Hence 

s I := s I /s 2 , s 2 := I/s solves 

2 2 
s I + ks 2 = m (nod n) 

(iii) Our fastest method for solving equation (I) 

for small k has time bound ~+o(i) , 

L k = exp~ink inlnk . In this method we search for 

v := min{v : IG(-4kv) I is --L. z/2- smooth}. The "random 
o 

behaviour" of the groups G(-4kv) and theorem 9 imply 

Vo ~ Lki/2+°(i) Sl 2 + kVoSl 2 = m(modn) can be 

solved in Lk I/2+°(I) steps by applying algorithm 7 

to a few randomly transformed versions of m. Trying 

all v _< Vo takes Lk I+°(I) steps. 

-2 -2 N2 N2 
s I + VoS 2 = mv ° (mod n) and s I + s 2 = m (mod n) 

can be solved in time ~/2+o(i) , see (i). 

Applying (ii) we can easily compose a solution 

s I, s 2 of s~ + ks~ = m (nod n) from 

s~,s~ , sl,s 2 and sl,s 2 . The whole computation 

can be done in ~/2+o(i) steps. 

Avoid small messages m: Since the roles of m and k 

in equation (I) can be interchanged, the case of 

small m is as easy as the case of small k. Small 

messages must be avoided (e.g. by expanding them 

to full size with an appropriate one-way function). 

The fastest attack on the signature scheme: In our 
2 2 

fastest method to solve Sl + ks2 = m (nod n) for 

large k the cryptanalyst tries to transform k into 

some ~ which he can afford to factor completely, 

~i He solves 2 + 2 _ (mod n) say k = N ipi " sl, i PiS2,i-m 

for all Pi in about L steps, Pmax := maxiPi - 
Pmax 

Using composition he combines these solutions and 

retracing the transformation of k he finds a 

solution sl,s 2 of equation (i). 

The fastest known algorithm which transforms k into 

0.4 k/Pmax some k such that Pmax ~ n and is 

L9/~I-O-smooth, takes L ~O~+O(I) steps. (This 
n n 

algorithm uses Pollard's p-method 6 for detecting 

the small primes of k and the early abort stra- 
7 

tegy for passing the useless k quickly.) For a 

IOOO bit modulus n the method takes about 263 

steps. Each step (multiplication or division of 

iOOO bit integers, or composition) itself consists 

of about 220 bit operations. Moreover the attack 

is intricate and requires sophisticated programs. 

In spite of the optimistic assumptions in our 

analysis the method is clearly unfeasible if the 

modulus n has at least IOOO bits. 

Summary: The methods for factoring n and for solving 

the equation x~ + kx~ = m (nod n) are closely 

related. The fastest known algorithms have time 

bounds L for factoring n, see Schnorr, Lenstra IO 
n 

T------ 

and L VO'4 for solving equation (i) , 
n 

L = exp ~in n in inn. The time bounds are the same 
n 

except for the constant in the exponent. The com- 

plexity of solving x~ + kx; = m (nod n) is com- 

parable to the complexity of factoring integers of 

size V~. Therefore the modulus n for the new sig- 

nature scheme should be about twice as long as for 
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the RSA-scheme. 

5. APPLICATIONS, EXTENSIONS AND OPEN PROBLEMS 

Commutative modular exponentiation functions (with 

the same modulus but different exponents) play an 

important role in many key management and communi- 

cation protocols. The fact that in the new signa- 

ture scheme everyone can use the same modulus (if 

its factorization is unknown) is likely to play a 

similar role in novel applications of signatures. 

The idea of using a common n is particularly 

attractive when a large organization wants to 

create many signature keys for all its employees. 

If the value of n is computed under tight security 

by the headquarters of the organization, each em- 

ployee can pick his own secret u which is not re- 

vealed to anyone else. Unfaithful employees cannot 

forge the signatures of other employees, and even 

security breaches at the headquarters do not en- 

danger the system if they happen after p and q are 

erased. 

A similar idea is applicable to large timesharing 

computer systems. During logon, the system 

generates a random message m and asks the user to 

sign it in order to prove his identity. This is 

much more secure than password authentication since 

an opponent cannot reuse an old signature and 

cannot forge a new signature even if he gains 

access to the file of authentication keys. If the 

value of n is computed once and made public by the 

system administrator, the computational burden on 

the users during key generation becomes minimal. 

It is easy to extend the signature generation 

technique to equations with more than two variables 

or degrees higher than 2, see appendix A. It is 

also possible to use systems of equations where 

both the message and the signature are vectors of 

values, and the signature is considered valid only 

when all the equations are satisfied. However, it 

is not clear whether such schemes have any perfor- 

mance or security advantage over the simpler binary 

quadratic case considered in this paper. 

It is not known whether a similar scheme can be 

used as a public key cryptosystem. The natural 

approach is to change the role of the variables - 

to make s i the cleartext and m the ciphertext. 

However, without further restrictions on the values 

of the s i, the cleartexts are not uniquely deter- 

mined by the ciphertexts, and thus it is impossible 

to decrypt. 

The main open problem concerning the new scheme is 

its security. To make the signature scheme as 

secure as possible, users should choose a large 

modulus n (to make its factoring difficult), change 

the value of k frequently (to make its analysis 

useless), perturb messages before they are signed 

(to prevent attacks based on multiplicativity), 

and expand short messages to full size (since short 

messages are easy to sign). However, the list of 

cryptanalytic attacks mentioned in Sections 3 and 

4 is almost certainly incomplete, and the reader is 

encouraged to find new attacks and to analyze their 

feasibility. 

APPENDIX A: A Simple Technique For Generating 

Trapdoor Polynomials 

A general method for creating trapdoor functions 

with arbitrary number of variables is to start from 

an easily invertible function and then scramble its 

description to make it apparently difficult. To use 

this method, choose a polynomial P'(Xl,...,x ) 
v 

which is linear in x I with arbitrary total degree 

d ~ 2 . All the solutions of the equation 

P'(x I ..... Xv) = O (mod n) can be obtained by 

picking arbitrary values for x2,...,x v and then 

solving the linear equation in the remaining 

variable x I. To scramble the description of the 

polynomial, choose an invertible linear transfor- 

mation of variables x = AS (mod n) where A is a 

secret matrix of constants. When the s. variables 
l 

are substituted into P', a new d-degree polynomial 

P(Sl,...,s ) is created which is no longer linear 
v 

in any of the variables. The equation 

P(Sl,...,s v) = O (mod n) is apparently difficult, 

but can be easily solved by changing the ~ solu- 

tions into s solutions via the secret transfor- 

mation A. 
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Equation (i) and solution (8) are a special case 

of this general technique. The P' polynomial is 

x I - x 2-m , and it is linear in x I (its linearity 

in x 2 as well is a coincidence). The most general 

solution of P'(xl,x2) = O (mod n) is 

x I = m/x 2 (mod n) where x 2 ranges over ~* . P' is 
n 

scrambled via the linear transformation 

x I = s I + s2/u (mod n), x 2 = s I - s2/u (mod n) 

where u is a secret constant. In terms of s I and 

s 2 the polynomial equation becomes 

2 2 
s I + (-i/u2)s2-m = 0 (mod n), which is exactly 

equation (i). This equation is quadratic both in 

s I and in s2, but its most general solution can be 

easily obtained via the inverse linear transfor- 

mation s I = (x I + x2)/2 (mod n), 

s 2 = (x I -x2)(u/2) (mod n) by substituting 

x I = m/x 2 (mod n). The result is exactly solution 

(8), with x 2 playing the role of the free para- 

meter r. 
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The security of this technique depends on the 

choice of P' and A, and each instance should be 

analysed carefully to verify that the transfor- 

mation A scrambles the easy structure of P' 

sufficiently well. 
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