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I. INTRODUCTION 

In 1976 Diffie and Hellman introduced the concept of a public-key cryptosystem [ I ]. In 1977 Rivest, 

Shamir and Adleman discovered the first incarnation of such a system [9 ], and soon afterwards Merkle and 

Hellman produced a second one [ 7 ]. Despite great interest in the area, the years have produced no other 

public-key cryptosystems which have attracted wide spread attention. 

The Merkle-Hellman system is based on the knansack problem, and in the original paper on the topic, both 

a basic system and an iterated one were presented. In April of 1982, Adi Shamir demonstrated that the 

basic system was insecure [8 ]. 

In this paper new methods, generalizing those of Shamir, are presented for attacking generalizations of 

the basic system. It is shown how these methods may be applied to the Graham-Shamir public-key crypto- 

system [ 2 ], and the iterated Merkle-Hellman public-key cryptosystem. We are unable to present a 

rigorous proof that the attacks presented here are effective. However, in the case of the Graham-Shamir 

system, the methods have been imolemented and have performed well in tests. 

The method of attack uses recent results of Lenstra, Lenstra, and Lovasz [ 5 ]. The cryptanalytic pro- 

blem is treated as a lattice problem rather than a linear programming one as in Shamir's result. 

II. GRAHAM SHAMIR KNAPSACK(GSK) [ 2 ] 

Public-key cryptosystems require the generation of a "mated pair" of keys. One key is kept secret, 

the other is made public. It is crucial that the problem of computing the secret key from the nublic 
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key be intractable. In many GSK's this is apparently not the case. Below is a description of the Droce- 

dure used to generate a mated pair of keys for such a system. How these keys are used for encryption and 

decryption will not concern us. 

STEP 0: 

STEP I: 

STEP 2: 

STEP 3: 

II.b) 

Generate positive integers z, n. 

Generate a sequence c 1, c2,...,c n 

with c. e {0, I} :z, i = i, 2 ..... n 
l 

such that 

i-I 
_> __ ~cj i = l, 2 ..... n c i 

j=l 

{where appropriate we will treat strings as the 

numbers they represent in binary). 

Such a sequence is said to be "super increasing". 

Note that for large z, n and small i, c. will 
i 

have leading zeros. 

Generate a positive integer y. 

Generate a sequence rh,l, rh, 2 .... ,rh,n, rl, l, 

r£, 2 ..... r£, n with rh, i £ {0,1} y , 

rz, i £ {0, I} y i = i, 2 ..... n 

Calculate 

h i = rh, i * c i * r£, i i = I, 2,..., n 

{the idea is that random r's well obscure the 

"super increasing" properties of the c's). 

Generate positive integers w, m, such that 

a) (w, m) = 1 
n 

b) m > ~ b i 
i = l  

C a l c u l a t e  

a i ~ wb.1 mod(m) i = I, 2,...,n 

Genera t e  a p e r m u t a t i o n  ~ on {1,2  . . . . .  n} 

o u t p u t  as t h e  p u b l i c  key < a ( 1 ) ,  a (2) . . . . .  aT(n)>  

k e e n < w ,  m, < a n ( l )  . . . . .  a (n)>> as t h e  p r i v a t e  key.  

HUERISTIC FOR CRYPTANALYZING GSK's 

Clearly, it is enough to recover £ ~ w-lmod(m) and m. 

such that 

la i - k.ml = b.1 i = i, 2,...,n 

We wish to recover w, m. 

are natural numbers k I .... ,k n 

We know that there 
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To begin the attack, the cryptanalyst randomly chooses a d element subset T of the published a's. 

large d should be will be analyzed in what follows. 

Let S = {ila i e T} 

t h e  i ' s  i n  S w i l l  n o t  be known t o  t h e  c r y p t a n a l y s t .  

C o n s i d e r  t h e  f o l l o w i n g  s y s t e m  o f  e q u a t i o n s :  

SI La. - K.M = B. i £ S. 
-- 1 1 1 

SI h a s  t h e  following properties: 

PI (Good) Among the solutions<L, M,<K.> ,<B. > > 
lies lieS 

<£, m<k.> <b.> > . 
x i c S x i E S 

is the "desired" one 

P2 (Bad) 

P3 (Bad) 

There are infinitely many undesirable solutions. 

The system is non-linear (K i M terms) and there are no known polynomial time 

algorithms to solve such systems in general. In fact, the problem of solving 

even single equations with two unknowns of degree two is already NP-complete [6 ]. 

How 

Curiously, P2 will be the key to overcoming P3. But to begin, we will simplify SI. By construction 

M > hi, i = 1, 2,...,n. Therefore, there is a largest e such that M/2 e > bi, i ~ S. We will assume that 

this e is known to the cryptanalyst (since at worst all possible e's could be tried in parallel). The 

size of this e plays an important role in determining the prospects that this attack will succeed. The 

larger the e with respect to M, the greater the chance of success. We now consider SII. 

S I I  0 < La .  - K.M _< M/2 e i ¢ S .  
1 1 

This system has properties similar to those of SI: 

P4 (Good) 

P5 (Bad) 

P6 (Bad) 

Among the solution <L, M,<K.> >is the "desired" one <~, m, <k.> >. 
1 ieS lies 

There are infinitely many undesirable solutions, 

The system is non-linear. 

Concerning P5, not only are there infinitely many solutions, but in fact for large enough integer 

there is always a solution of the form < L, f, < K.> >. 
1 . i E S 

I F I 
To s e e  t h i s  c o n s i d e r  t h e  r a t i o n a l  number  *_t_= • f > 0 and  l e t  i ~---I d e n o t e  t h e  n e a r e s t  i n t e g e r  s m a l l e r  

mt2_J m 

than f Then for some e, 0 _<e< 1 f - e =Ill . "We know that 
sLeD m m 

so multiplying by f/m we have 

and it follows that for 

0 < £a.- k.m < m/2 e i e S 
1 i 

0 < - - - f  £a  i - k i f < f / 2  e 
m 

f > 2 e £ a ,  a = m a x { a . }  
ieS i 
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and therefore 

0 < [~ ~a.-i e£a.]-x k'f < f/2e - e £ a i ' l  _ i e S 

(*) 0 < W £a.x - k.x f - < 

Since g = 2 e ~X(ai) is approximately m and m > £ 

new p r o p e r t i e s :  

Sill 0 < La. - K.f < f/2 e i ¢ S. 
1 1 -- 

P7 (Good) 

P8 (Very Good) 

f/2 e i ¢ S 

the choice of f > 2g 2 should give a new system with 

SIII is linear. Therefore, the methods of Lenstra, Lenstra and Lovaez, may be 

applicable in finding solutions. 

By the arguments in [ 8 ], [3] we know that for 

a) Among the solutions of Sill there is at least one of the form <L, {k i} > 
i e S 

where k.'s are exactly those which occur in the "desired" solution to 
1 

SII. This follows immediately from (,) . 

b) For L = i, 2 ..... [ f/2ea I, there are solutions to SIII of the form 

<L, {0} i e S >" This again follows immediately from (,). 

c) For sufficiently large d there is a high probability that Sill has no other 

solutions than those indicated in a) and b). 

d such that 2 ed > 2m system . 

SIV 0 < La. - K.m < m/2 e i e S 
1 l -- 

should have no solution for L real, other than in intervals (0, Cl) , (£, e2) for some positive 

e l ,  e 2 < i .  

Since there is a 1 - 1 correspondence between solution to SIII (for real L) and solutions to SIV, 8c 
follows. 

Notice that Shamir's arguments also support the following: for integer h, 2 < h < 2 e and for d such 

that h d > 2m the system. 

SV 0 < La. - K. m < m/h i e S 
-- i i -- 

should have no solution for L real, other than in intervals (0, El), (Z, e2) for some positive 

el, e 2 < i. And therefore 

SVI 0 < La. - K.f < f/h i ¢ S 
- -  I 1 -- 

should have no solutions in integers other than those o:? the form 

a) <L, < k.> > 
1 ieS 

h) F o r  ,~ = l ,  2 . . . . .  I f / h a l  , < L , { O }  i c S > 
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In otherwords for sufficiently large d, other than the L's in solutions a) and b) 

L are such that La.mod(f) is very large (greater than f/h) for some i. 1 

all other integers 

SOLVING Sill 

We will use a lattice reduction algorithm due to Lenstra, Lenstra, and Lovacz [5 ] to solve Slll. The 

algorithm has the following properties 

a) On Input 

Outputs 

VI, V2,..., V n vectors in R n 

and integers fi,j 1 ! i, j J n such that V * vectors in R n Vi*' V2*''"' n 

I. Vi* = fi,l VI + fi,2V2 +"'+ fi,nVn 

n~l 

2 Ivi*l _< 1.34 lhl 

i=1, 2,...,n 

i = I, 2,...,n 

where IVl denotes Euclidian length of V and I. is the i th successive 
I 

minima o f  L ( i . e . ,  X. i s  t h e  s h o r t e s t  v e c t o r  i n  L which  i s  n o t  a l i n e a r  l 
c o m b i n a t i o n  o f  X l '  X2 . . . .  ' X i - 1  )" 

b) It runs in polynomial time (independent of n). 

Now consider the lattice L generated by the following vectors 

Vl = < al ' a2 . . . . . .  ad ' 0 > 

V 2 =<f , O, ... , 0 , 0 > 

V 3 =<0 , f, ... , 0 , 0 > 

where ~. is the jth 
3 

Vd+ 1 = < 0 

element in T. 

, 0 .... , f , 0 > 

As we have already argued the lattice L contains vectors 

W I 

W 2 

= < ~I' a2 .... ad' 0 > = l.V 1 + 0.V 2 +...+ 0.Vd+ 1 

= < 2~i, 2~2,...,2~d, 0>:= 2.V I + 0.V 2 +...+ 0.Vd+ 1 

~< ~/2eaI~, ~f/2ea~$2 ..... ~f/2eal~d , 0>= lf/2e~Iv I + 0.V2+...+0.Vd+ I 

= < g i' gl,2' > L0 klV2+ "'+ I, "'''gl,d '0 = VI+ k2V3+" kdVd+l 

w~f/2eal 

U o 

U 
Z = < gz,l' gz,2''"'gz,d 0 > = LzVI + klV2 + k2V3+...+ kdVd+ I 
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for some integers £z (in fact Lz : LO + z) and where IUoi ~ f/2 e. 

Since all the Wi's are linear combinations of W 1 it follows that if L contains no other vector Y such 

that IYI <~ f/2 e then 12 = U O. 

Unfortunately, the lattice reduction algorithm is not guaranteed to find 12 (and therefore the desired 

ki's ) but is only guaranteed to find a vector V2* which is not to much longer. 

d d 
v2*l< 1.34 2 112]_< (1.34 2 ) ( f d ) ( f / 2 e ) .  

If, however, we could guarantee that L contains no "exceptional" vector Y different than the Wi's 

d 

and Ui's such that IYI ~(1.34 2)(~d)(f/2e) then the lattice reduction algorithm has no choice but to 

give us one of the Ui's as V2* and therefore we ebtain the desired k.'s . 
1 

We have argued that by increasing d we reduce the probability that L contains such an "exceptional" 

vector. On the otherhand increasing d increases the "inaccuracy" of the lattice reduction algorithm. 

These opposing pressures will balance out favorably and we will with high probability obtain the k.'s when I 
d is such that 

(,]-d)(1.34 d/2) 

or taking logs 

d 2 
d log(d) -~-Iog(1.34) > log(m)+1 (**) ed - ~ 

such a d will not exist if e is small with respect to m. 

For example, if the b.'s are approximately 2200 and if m is approximately 2214 then for d = 31 the 
i 

right hand side of (**) is about 216 and the left hand side is about 215. So that the attack described 

is very likely to succeed. However, if m is approximately 2213 then no appropriate d exists and the 

attack cannot be guaranteed to find the desired ki's. 

It is important to note that these calculations for d are based on the worst case running of the lattice 

reduction algorithm. Experience suggests that the average behavior of the algorithm, at least on crypto- 

graphically generated lattices, is far better. In fact, so much better that I believe it would be prudent, 

in the absence of countervailing information, for cryptographers to assume that the algorithm always finds 

exactly 12 (or at least misses by at most a polynomial in d). (See Lagarias [ 4] for conjectures in a 

different direction. 

NOTICE 

Heuristic arguments similar to those above are used to justify several of the steps which follow. 

Because these additional arguments involve no new ideas, the details will be omitted and only an outline 

will be provided. In general these arguments require showing that a given system has some "special" or 

expected solution and that under "reasonable randomness assumptions" other "exceptional" solutions can be 

made arbitrarily rare by increasing the number of inequelities in the system. 
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Returning to the attack we now assume that the k.'s have been found. Therefore, SII becomes 
i 

SVII 

0 < La. - k.M < M/2 e i ¢ S 
i 1 -- 

with properties: 

P9 (Good) 

PlO (Good) 

Among the solutions < L, M > is the desired one<~, m>. 

The system is linear. 

Pll (Bad) There are infinitely many undesirable solutions. 

To overcome Pll we need a way to distinguish < ~ , m > from the other solutions. 

observing that what makes ~, m special is that at least for small i, 

~a i - kim = b i = r * h,i ci* r~,i 

is not only less than m/2 e, 

We may do this by 

but has a "window" of leading zeros in the high order bits of c.. In other 
I 

words, ~a. - k.m mod(2 y+z) is small. Or equivalently, there are integers 
i I 

is small. 

Now consider the following system, where T is an h element subset of T, 

an integer which will be considered later. 

qi such that ~a i - kim-qi2Y+Z 

= {ili E T} and b is 

SVIII (A) 0 < La i - kiM < M/2 e i e 

+z 2y+z-b (B) 0 < La i - kiN - Qi 2y i~S. 

This system has the following properties: 

PI2 (Good) It is linear. 

PI3 (Good) If i ~ S~c. has a least b 
1 

a) Among the solutions <L, M, 

<~, m, {qi } i ¢ S > 

leading zeros then 

<Qi > i e S > is the desired solution 

b) For h large enough, then with high probability all undesirable solutions are of 

one of the following forms: 

i) <L, M, {Qi}i E S > with Qi # 0 and M much larger than m. 

ii) <L, M, {0} i e S > " 

Consider for examole b = z/2. Assume, as is reasonable, that i<n/2~c i has z/2 leading zeros. Then 

with probability I/2 h, S will contain only i's such that i < n/2 and a) will hold. Consider an M # m 

such that <L, M, {Qi}i ~ ~ > is a solution to SVllI (A). 

Such M are sparse as can be seen from the "scaling" arguments of Shamir. For such M we would expect 

that La. - k.B,: would have i/2 z/2 chance of having a window of z/2 zeros starting at bit y+z. Further 
1 l 

the chances that for all i e S La. - k.M would have such a window would be expected to be (I/2Z/2) h. If 
1 1 

h is large then M is extremely unlikely to satisfy SVIII(B) in addition to SVIII(A). The exception is 
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when M is so small that La i - kiM is actually less than 2 y+z-z/2 and this gives a solution of t ) ~ e  ii. 

To give some idea of the selection of h assume M is about 2200 z = 100, n = i00 Then if h = 4 we 

will choose an appropriate S after about 16 tries and a large M ~ m which satisfies SVIII(A) will have 

about 1/2200 chance of also satisfying SVIII(B). 

SOLVING SVIII 

Again we will use the lattice reduction algorithm . Consider the lattice L generated by the following 

vectors, we assume b = z/2 and T contains only elements with a window of z/2 elements at the y+z th bit. 

Vl =<~i'~2 . . . . .  % ' g~ ' g~2  . . . . .  g~% > 

v2 = < ~ l ' k 2  . . . . .  ~h ' gk 'g~2  . . . . .  ~% > 

V 3 = < 0 , 0 ,..., 0 , g2 y+z , 0 ,..., 0 > 

V 4 = < 0 , 0 ,..., 0 , 0 , g2 y+z .... , 0 > 

Vh+ 2 = < 0 0 ,..., 0 , 0 , 0 ,..., g2 y+z > 

where ~. is the jth element in 
3 

where k. is the k corresponding to ~. 
3 3 

and 

where g is approximately m/2 y+z/2 

(the purpose of g is to make sure that the constraints of SVIII(B) are not "lost" in solutions to 

SVIII(A) when the Euclidean metric is used. Notice for example, that when W = £V 1 + mV 2 + qlV3 + ... + 

qhVh+2 is considered then each entry in W is about m, whereas, without the g the last h entries 

of W would be negligible compared to the first h entries). 

We know from the preceeding that the following vectors are in L 

W = £.V 1 + mV 2 + qlV3 + q2V4 + ... + qhVh+2 

where IWI is approximately ~(m) 

Uj = LjV 1 + MjV 2 + 0V 5 + 0V 4 + ... + OVh+ 2 

for various j. 

By the preceeding arguments we can be reasonably sure that all other vectors Y e L have IYI much larger 

than lWl 

Now since U i are all dependent on V 1 and V 2 alone. Then will be dependent of Ii, 12. 

care of, that leaves W as ~3 and no other vectors of nearly comparable smallness. 

reduction algorithm should find 

The U's taken 

Therefore the lattice 

V3* = W = ~V 1 + mV 2 + qlV3 ÷ q2V4 +...+ qhVh+2 
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and the desired £ and m have been recovered. 

WARNING 

The situation just considered is very complicated and cumbersome. The agruments presented are far 

from being proofs, and at best only provide partial justification for believing that the methods suggested 

are effective. Many things could go wrong. The ultimate test of these techniques is whether they work 

on real problems. 

In the case of GSK's the method has been implemented by the author. On five different trials where 

roughly z ~ l016 y ~ i0%~ m = l064, w 21064 the method succeeded and w, m were recovered after only 

several hours of computation on a personal computer. To facilitate the trials the sets T and T and 

the numbers, e, d and, h, were pre-chosen so that the trial and error parts of the hueristic could be 

avoided. 

In particular one trial used: 

m = 

w = 

b. = 
z 1 

b. = 
12 

h. = 
13 

b. = 
z 4 

3710007477163539079884927556810340706993256827446844839469523587 

2754665076473556947305356290417812811859660331309122185053365832 

51330876000000000000327552192031 

13235976000000000000918428068384 

17399971000000000000524397343633 

25002900572438811724397163537692 

T = {ail . . ai4} , al 2' al 3' 

= { a l l ,  a .  } ai 2 ' z 3 

II. ITERATED KNAPSACK (IK) 

Below we indicate how the techniques above might be used to attack the Iterated knapsack systems 

of Merkle and Hellman. Regretably, the author did not allocate adequate time for a detailed analysis 

and exposition of the ideas involved. Accordingly only a brief sketch is provided. The ultimate test 

of the efficacy of these ideas is of course whether they work on real problems. 

Below we describe the procedure for generating ~ mated pair of keys for an IK: 

STEP O: . .  

STEP I: 

Generate positive integers z, n, y 

Generate a sequence a0, I, a0,2''"'a0, n 

a0,ie{0,1}z , i = i, 2 ..... n such that 

i-I 
a0, i >- E a0,j • i = 2, 3 ..... n 

j=l 

with 

Generate positive integers Wl, m I such that 

a) .(Wl, ml) = 1 
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n 

b) ml > E" a0,i 
i=l 

Calculate 

al,i E w I, a0,iMOD{ml ) 

STEP Y: 

Generate positive integers Wy, my such that 

a) {Wy, my) = 1 

n 

b) my > ~ a y _ l , i  
i = l  

C a l c u l a t e  

a i £ Wyay_l,iMOD{m ) 

STEP Y÷I 

Generate  a pe rmuta t ion  ~ on {1, 2 . . . . .  n} output  as the  p u b l i c  

key < a {1), a {2) . . . . .  a (n)> keep 

< Wl, m I, w2, m 2 ..... Wy, my, < a (1) , a (2) ..... a (n)>> 

.as the private key. 

We know that there are natural numbers kl, k2,...,k n such that 

£a. - k. m = b. i = i, 2 ..... n 
1 1 l 

We may assume that for an appropriate choice of e and of d element subset S of {I, 2,..., n} that, 
using the techniques of section II, we have recovered ki, i e S. We now consider the system 

TI 0 < La. - k.M < M/2 e i e S 
-- 1 1 -- 

TI has the following properties: 

Q1 {Good) 

Q2 {Good) 

Q3 (Bad) 

It is linear. 

Among the solutions (L, M) is the "desired" one (£, m). 

There are infinitely many undesirable solutions. 

We therefore wish to find a means of distinguishing (£, m) from other solutions. 

is that 
(i) £a. - k. m = b. 1 1 1 

and b. is itself the result of a previous step in the key generation process. 
1 

such that 

C2) 

£b. - k. fl = c. 
1 1 1 

and 
^ 

~b. - k. ~ < ~/2 e 
1 1 -- 

What makes (~, m) s p e c i a l  

That i s ,  t h e r e  are  ~, ~, 
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We will use tricks similar to those for obtaining the ki's to obtain the ki's. Consider the following 

TII 

when 

blem a V3* 

(A) 0 < La. - k.M < M/2 e i e S 
i 1 -- 

(B) 0 < La. - k.M - K. f < f/2 e i e S 
1 I i -- 

f > 2ebi , i ~ S and d is sufficiently large we should obtain from the corresponding lattice pror 
^ 

whose representation as a linear combination of the inputs will give us {ki} I e S 

To see part of the reason for this consider multiplying (I) above by ~]= f! + e for positive e less than 
f I and multiplying (2) above by -~- From these equations it can be seen that{[A~£,]A]m, {k i}. } is 
m leS 

a solution to TII. 

having obtained the ki's we finally consider the system 

(A) 0 < La i - kiM ~ M/2 e i e S 

(B) 0 < ea i - kiM - ki ~ < M/2 ~ i ~ S 

Solving this using the lattice reduction algorithm should give us a solution< L, M, M > with the property 

that 

L = £ and M - m . 
(L,M) (L,M) 

Part of the reasoning here is that there are solutions to Till of the form < A£ + g, Am+ h,B > for 
integers A, B, g, h. But g,h should typically be very s~ll with respect to A and B. In fact for very 
small A and B (e.g., A = ~£) g and h should be controllable and we should be able to find a solution 
to TIII where the gcd property holds. Failing this, at least a large portion of the high order bits of 
~,i,m)~ should be discovered. 

ACKNOWLEDGEMENT 

I would like to thank Jeff Lagarias, Ken 14anders, Andrew Odlysko, Adi Shamir and Ron Rivest for their 

suggestions regarding this project. 

REFERENCES 

[I] W. Diffie, and N. Hellman, New Directions in Cryptography, IEEE Trans~ Information Theory, IT-22-6, 
November, 1976. 

[2] A. Lempel, Cyrptology in Transition: A Survey, Program 134-45-90, Discrete'Mathematics Department, 
Digital Techniques Laboratory, Sperry Research Center (1978). 

[3] Lagarias, J., Knapsack-Type Public Key Cryptosystems and Dcophantine Approximation, 
(abstract). 

[4] J. Lagarias, The Computational Complexity of Simultaneous Dcophantine Approximation Problems, ' 
Proceedings 23rd Foundations of Computer Science Conference (1982) pg. 32. 

[5] A.K. Lenstra, H.W. Lenstra, Jr., and L. Lovasz, Factoring Polynomials with Rational Coefficients, 
Report 82-05, ~athematics Institute, University of Amsterdam, Harch 1982. 

[6] K.L. Manders and L. Adleman, NP-Complete Decision Problems for Binary Quadratics, J. Computer and 
Systems Science 16 (1978), 168-184. 

[7] R. Merkle, N. Hellman, Hiding Information and Signatures in Trandoor Knapsacks, IEEE Trans. 
Information Theory, IT-24-5, September, 1978. 

[8] A. Shamir, A Polynomial Time Algorithm for Breaking Merkle-Hellman Cryptosystems, Proceedings 23rd 
Foundations of Computer Science Conference (1982). 

[9] R. Rivest, A. Shamir and L. Adleman, A Method for Obtaining Digital Signatures and Public-Key 
Cryptosystems, CACM 21-2, February, 1978. 

412 


