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Abstract. In this paper we consider the

difficulty of factoring multivariate polynomials

F(z, y, z,...) modulo n. We consider in particular

the case in which F is a product of two randomly

chosen polynomials P and Q with algebraically

specified coefficients, and n is the product of two

randomly chosen primes p and q. The general

problem of factoring 1’ is known to be at least as

hard as the factorization of n, but in many re-

stricted cases (when P or Q are known to have a

particular form) the problem can be much easier.

The main result of this paper is that (with one

trivial exception), the problem of factoring F is

at least as hard as the factorization of n when-

ever P and Q are randomly chosen from the same

sample space, regardless of what may be known

about its form.

1. Introduction

If you pick two random primes p and q and

multiply them together, the result is believed to

be very difficult to factor. Even though this com-

plexity is unproven (both in the worst case sense

and in the average case sense), this widely ac-

cepted assumption serves as a basis for the secu-

rity of several cryptographic schemes (such as the

RSA — see Rhed, Shamir and Adleman [1978]).
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In this paper we consider the following re-

lated problem: If you pick two random multivari-

ate polynomials P(z, y, z, . ..) and Q(z, y,z,...)

and multiply them together, is the result hard to

factor? We are interested in particular in the case

where the polynomial product F = PQ is com-

puted modulo a numeric product n = pq, and try

to relate the difficulty of factoring F with the dif-

ficulty of factoring n.

Our interest in this problem arose in an at-

tempt to construct new cryptographic schemes,

which are more efficient than the RSA. They are

based on the problem of factoring multivariate

polynomials modulo a composite n, and we were

surprised to discover that this natural problem re-

ceived little attention in the literature. There are

many papers on the problems of factoring such

polyno-mials over Z, Q, or over finite fields, but

not over rings such as Zn. It is easy to prove that

in the worst case the problem of factoring F can-

not be easier than the problem of factoring n, but

there seems to be no analysis ofi

1.

2,

3.

The average case complexity of the problem

(F maybe eaay to factor for random choices

of P and Q).

The problem of factoring multivariate poly-

nomials of particular forms (e.g., when only

certain monomials appear in the given poly-

nomial F).

The problem of factoring multivariate poly-

nomial when side information is available

(e.g., that the unknown factors P and Q have

a particular form).

All these problems arise naturally in cryp-
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tographic applications: worst case results are

meaningless, compactly representable multivari-

ate polynomials are desirable since they lead to

smaller keys and more efficient implementations,

and side information can sometimes be extracted

by exploiting weaknesses in the protocols. How-

ever, the problems are also of great interest in the

context of computer algebra systems, which are

often required to factor large multivariate poly-

nomials with specialized forms.

Here are some simple examples which illus-

trate the intricacies of this problem:

1.

2.

3.

4.

5.

6.

P = (z + ay), Q = (z – ay), where a is

a randomly chosen constant in [0, n). The

factorization of the product F = (Z2 – a2y2)

(mod n) requires square root extraction, and

thus it is as difficult as the factorization of

the modulus n.

l-’ = (z + ay), Q = (z + ay). The modified

product F = (Z2 + 2axy + a2y2) (mod n)

becomes trivial to factor, since a occurs ex-

plicitly in the coefficient of zy. This demon-

strates that whereas the extraction of square

roots of numbers mod n is provably as dif-

ficult as the factorization of the modulus,

the extraction of square roots of polynomi-

als mod n can be very easy.

P =(z3+az +b), Q=(x3+cz+d),

where a, b, c, d are randomly chosen constants

in [0, n). The factorization of their product

F = (Z6 + (a + C)Z4 + (b + d)z3 + acz2 +

(ad + bc)r + bd) (mod n) is as difficult as the

factorization of n.

P=(z3+az +b), Q=(z4+cz+d). This

slightly modified product is trivial to factor:

Given F = (Z7 + az5 + (b + C)Z4 + &r3 +

acx2 + (ad+ bc)z + bd), we can obtain a and

d by inspection, and then b and c by division.

P=(az+by+cz+ . ..). Q=(dz+ey+

fz + . . .), where a, b,... are randomly cho-

sen constants in [0, n). The factorization of

their product F (mod n) is as difficult as the

factorization of the modulus n whenever the

number of variables is at least 2.

In example 5, assume that the cryptanalyst

knows that a = O. This side information

7.

8.

ring

over

tion

makes the factorization of F trivial. On the

other hand, if the cryptanalyst knows that

a = 1, the problem remains hard.

The single variable case of example 5, P =

ax and Q = dz, is trivial to factor. The

factorization remains easy when P = as and

Q = (dz + 1), but becomes as difficult as the
factorization of n when P = (az + 1) and

Q = (dz + 1).

Let P and Q be two randomly chosen poly-

nomials of the form (a2z3y + b3zz + (a +

b2)yz)(az + by+ 8z) + 1. In spite of the com-

plex relationships between the various coef-

ficients and the fact that the factorization

problem can be translated into 35 equations

in only 4 unknown parameters, the general

result proven in this paper shows that the

problem of factoring F = PQ (mod n) is at

least as difficult as the factorization of the

modulus n.

Before we proceed, a word of caution: The

of (univariate or multivariate) polynomials

a field is known to be a unique factoriza-

domain, and we have a good intuition about

what the factors can look like. This intuition can

be misleading when we consider polynomials over

the ring Zn, which has zero divisors. Consider,

for example, the simplest conceivable polynomial

F(c) = Z. It is clearly irreducible over any field

or over the ring of integers Z. However, x is re-

ducible over Zn for n = pq, and can be written

as the product of the two nontrivial polynomi-

als P = c(px + q) and Q = (qz + p) (mod n)

where c = (p2 + g2)–1 (mod n). This curious

counterexample demonstrates that the factors of

F need not have a lower degree, and raises the

question whether there are any irreducible poly-

nomials modulo a composite n (for example, can

we continue to factor these P and Q?). Later in

this paper we’ll prove that these P and Q are in

fact irreducible, and provide a complete charac-

terization of all the irreducible multivariate poly-

nomials modulo a composite n.
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2. Definition of the Problem

Definition: An algebraic ~orm is a multivariate

polynomial in the variables Z, y,. . . whose coeffi-

cients are rational functions (i.e., ratios of polyno-

mials) in the free parameters a, b, . . . . An algebraic

collection oj polynomials (mod n) is the set of all

the polynomials in the variables Z, y, . . . with nu-

meric coefficients which can be obtained from an

algebraic form by substituting values in [0, n) for

all the free parameters a, b, . . . . This collection can

be considered as a probability space by making all

the choices oft he parameters equally likely. With

some abuse of notation, we denote both the form

and the collection by the same letter C.

Example: C = (a2x + (b/a2)y2 + (a + b)2zy) is

an algebraic form. The n2 possible substitutions

of values in [0, n) for a and b define an algebraic

collection of polynomials. Some polynomials of

the form (iz + jy2 + kzy) do not occur at all in

this collection (e.g., when i is a quadratic non-

residue mod n), some polynomials are chosen sev-

eral times (e.g., when b = O there are four choices

of a which result in the same polynomial), some

polynomials are chosen only once (e.g., whenever

a and b are invertible (mod n)), and some poly-

nomials are ignored (e.g., whenever a is not rela-

tively prime to n and thus b/a2 is ill defined). As

a result, the number of polynomials in C is smaller

than n2, and they have a non-uniform probability

distribution.

Definition: An algebraic form C is called monic

if the coefficient of its leading monomial (under

lexicographic order) is 1, and trivial if its collec-

tion of polynomials consists of a single polynomial.

Definition: An algebraic factorization problem

consists of two monic algebraic forms Cl and C2

with the same modulus n. They define a prob-

ability space of factorization problems, in which

random polynomials P and Q are chosen from the

respective probability spaces Cl and C2, and mul-

tiplied together mod n. The product F is then

presented as input to the factorization algorithm,

whose goal is to find some P’ in Cl and some Q’

in C2 whose product mod n is F.

Remarks:

1.

2.

3.

4.

For the sake of simplicity, we assume in this

paper that the syntactic complexity of the

polynomials (i.e., the number of variables,

the number of terms, the degrees, etc) is

fixed, and the only parameter which is al-

lowed to grow asymptotically is the value of

n. However, with carefully defined exten-

sions, the results remain valid even when the

synt attic complexity oft he polynomials is al-

lowed to change as well.

The goal of the factorization problem is not

necessarily to find the original P and Q, since

F may have several indistinguishable factor-

ization. However, we insist that the factors

found should have the proper algebraic form.

For example, if P and Q have the algebraic

form (Z2 +az), it is trivial to factor the prod-

uct (X4 + (a’ +a’’)z3 +a’a”z2 ) into the prod-

uct of X2 and (Z2 + (a’ + a“)z + a’a”), but

the factorization will be considered illegal ex-

cept in the unlikely case a’a” = O (mod n)

(in which the two factors are of the form

(Z2 + az) for the particular values of a = O

and a = (a’+ a“), respectively). As a result,

the algebraic factorization problem may be

difficult even if each one of P and Q can be

factored independently.

The goal of the factorization is to find P’

and Q’, but not necessarily the values of the

parameters a, b,... in their algebraic defini-

tions. For example, if the coefficient of z in

P’ is a2, itsuffices to compute az rather than

to find the value of the underlying parameter

a by root extraction.

The definition of the factorization problem

allows algebraic relationships between the

various coefficients in P, and algebraic rela-

tionships between” the various coefficients of

Q, but does not allow related parameters in

P and Q. For example, the problem of fac-

toring (z+ ay + a2z)(bz + b2y + z) (mod n)

with independently chosen a and b is admis-

sible, but both the easy factoring problem

(~+ ay)(z + ay) (mod n) and the hard fac-
toring problem (Z+ au)(c – ay) (mod n) are

inadmissible problems in our framework. In

Section 5 we extend the set of admissible
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problems to include such examples as well.

3. Irreducible Factors Modulo A Com-

posite

As demonstrated in the introduction, even

the simplest polynomial F = z (mod n) can be

factored into (p2 + q2)–1 (pz + q)(qz +p) (mod n).

In this section we clarify the situation by charac-

terizing the irreducible polynomials mod n, and

upper bound the number of ways in which PQ

can be factored mod n. This bound will be cru-

cial in the proof of the main result.

Due to the Chinese remainder theorem, the

ring Zn can be viewed as the direct product of the

two finite fields Zp and Zq. Each polynomial F

(mod n) can thus be viewed as a pair of polyno-

mials (Fl, F2) where F1 = F (mod p) and F2 = F

(mod q). In particular, the polynomial F = z

(mod n) can be viewed as the pair of polynomials

(z, x). Since the product of such pairs is com-

puted componentwise, we can write (z, z) as the

product of (o, 1) and (1, z). By using the Chinese

remainder theorem it is easy to show that this is

essentially the factorization demonstrated above.

Lemma 1: The set of irreducible multivariate

polynomials mod n is exactly the set of polyno-

mials whose pair form is either (P, 1) or (1, Q),

where P is irreducible mod p and Q is irreducible

mod q (ignoring multiplication by constants).

Proofi We first show that (P, 1) is irre-

ducible. If not, it can be written as (P, 1) =

(P’, Q’)(P”, Q“), and thus P = P’.P” (mod p)

and 1 = Q’Q” (mod q). However, P was assumed

to be irreducible mod p, and thus either P’ or P“

are a constant. Since Zq is a field, 1 can only be

the product of constants mod q, and thus both Q’

and Q“ are constants. By chinese remaindering

two constants mod p and mod q we get a constant

mod n, and thus one of the two factors of (P, 1)

is a constant and the factorization is trivial. A

similar proof shows that (1, Q) is also irreducible.

For any other multivariate polynomial (P, Q)

where neither P nor Q is a constant, the factoriza-

tion (P, Q) = (P, 1)(1, Q) is nontrivial, and proves

that (P, Q) is reducible mod n. QED.

Corollary 2: All the irreducible polynomials

mod n have non-constant coefficients which are

either multiples of p or multiples of q. Conse-

quently, there are no monic irreducible polynomi-

als mod n, and knowing any non-monic irreducible

polynomial mod n is equivalent to factoring n.

Proof: If P is irreducible mod n, then all its

non-constant coefficients (including its leading co-

efficient) are obtained by chinese remaindering a

non-zero coefficient from P (mod p) with a zero

coefficient from 1 (mod q) or vice versa. Such a

coefficient is either a multiple of p or a multiple of

q. QED.

This corollary is the main reason we restrict

the algebraic factorization problem of F to the

recovery of P’ and Q’ rather than to a complete

factorization of F into irreducible factors — oth-

erwise the problem becomes uninteresting.

Over fields such as 2P and Zq, a polynomial

of degree d can be factored into at most d factors.

Over the ring Zn this bound is no longer true. For

example, the polynomial P = c (mod n) of degree

d=l can be written as the product of two linear

factors. However, it is easy to establish an upper

bound on the number of possible factorization:

Lemma 3: A monic multivariate polynomial F

which has a constant degree d can have at most a

constant number 22d of factorization into a pair

of monic polynomials F = PQ (mod n).

Proofi Modulo a prime, a monic polynomial F

of degree d can be uniquely factored into at most

d irreducible monic factors. Modulo n, F has at

most 2d irreducible factors of the form (P, 1) and

(1, Q). The number of ways in which F can be

split into a product of two monic polynomials can-

not exceed the number of partitions of the set of

irreducible factors of F, which is 22d. QED.

Remarks:

1. Without normalizing the polynomials to

monic form, there can be exponentially many
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ways to write F as a product of P and Q,

which differ by their multiplicative constants.

2. The number of partitions which result in P

and Q of the desired algebraic form can be

much smaller, but there are examples of Cl

and C2 for which the number of proper fac-

torization is exponential in d. When d is

allowed to grow logarithmically with the size

of n, the number of factorization is polyno-

mial, and the proof of our main result re-

mains valid. When n is the product of more

than two primes, we can again handle con-

stant or logarithmic number of factors, but

not cases in which this number grows faster

than O(log(lnl)) = O(Iog log n).

4. The Main Result

Theorem 4: Any algebraic factorization problem

with non-trivial Cl = C’z is at least as hard as the

factorization of the modulus n.

This can be viewed as the proper extension

from numbers to polynomials of the statement

that “extracting square roots modulo a composite

is equivalent to factoring”. The obvious extension

(i.e., computing P from P2 (mod n)) is clearly in-

adequate, since in many cases it is actually an easy

computational task. Instead, we consider the case

where the algebraic form of the two polynomials

is the same, but each one is chosen with indepen-

dent random parameters. The only exception is

the case of trivial algebraic forms, since we can

easily show:

Lemma 5: If either Cl or C2 is trivial, the alge-

braic factorization problem is solvable in polyno-

mial time.

Proofi A trivial form generates only one polyno-

mial P, which can be found by substituting ran-

dom values into the parameters of the given al-

gebraic form, Once P is known, we can divide

the given polynomial F by P in polynomial time,

and obtain Q. By definition, it has the proper

algebraic form. QED.

One possible approach to the proof of the

main theorem is to embed a numeric square root

computation in the polynomial factorization prob-

lem, so that the later cannot be easier than the

former. This can be done in some particularly

simple cases, but for arbitrary algebraic factoriza-

tion problems it seems to be very difficult, since

the many known relationships between the un-

known parameters can supply a lot of side infor-

mation.

Our approach is based on the invariance of

the factorization problem with respect to the or-

der of P and Q: F can be written both as PQ

(mod n) and as QP (mod n). Since P and Q

are assumed to be random members of the same

algebraic collection, these two factorization are

(information theoretically) indistinguishable.

Let us consider now the transformation

which switches the positions of P and Q modulo

p, and keeps their positions modulo q. By Chi-

nese remaindering P (mod p) with Q (mod q) we

get one polynomial S (mod n), and by Chinese

remaindering Q (mod p) with P (mod q) we get

another polynomial T (mod n). It is easy to show:

Lemma 6: If Cl = C2 = C’, then F = ST

(mod n), and S and T also belong to C.

Proof: F is clearly equal to ST modulo both p

and q, and thus ako modulo n. To prove that S

belongs to C, Chinese remainder the values mod p

of the parameters a’, b’, . . . used to define P with

the values mod q of the parameters a“, b“, ., , used

to define Q. The results a, b, . . . will define S.

A similar proof shows that T also belongs to C.

Note the crucial role of the algebraic nature of

the relationships between the coefficients — the

result will no longer be true if the coefficients of

P would be related to each other by bit reversal,

for example. QED.

If someone knows both the PQ and the ST

factorization of F, he can try to factor n by us-

ing the fact that P is equal to S mod p but P

is not likely to be equal to S mod q. one tech-

nical difficulty is that the later is not guaranteed

(unlike the case of numeric root extractions, when

the two roots +r and —r (mod p) can never be the
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same for T # O). However, we can use the follow-

ing classical property of low degree multivariate

polynomials:

Lemma 7: A multivariate polynomial G(a, b,,,.)

of constant degree d modulo a large prime q is

either everywhere zero or almost nowhere zero.

We need the following corollary:

Corollary 8: Two independent random assign-

ments of values to the free parameters a, b,. . . of

a multivariate rational function R(a, b,. . .) of con-

stant degree d modulo a large prime q lead with

overwhelming probability to two different values,

unless I?(a, b, . . .) is equal to some constant v~

whenever it is defined.

Proofi Express the rational function 12(a, b,...)

as the ratio of two low degree multivariate poly-

nomials B’(a, b,. . .)/l?’’(a, b,. . .). Assume that it

is not a constant, and let VI be its value for one

random assignment. Then the low degree poly-

, ,...) = l? ’(a, b,... v~ltl(a,b,, ),...)nomial G(a b

(mod p) is not identically zero, and thus a sec-

ond random assignment to the free parameters is

extremely unlikely to make G and l?” zero. We

can thus divide G by R“ mod q, and get with

overwhelming probability a defined value V2 of R

which is different than VI, QED.

Proof of Theorem 4: Assume the existence of

a “magic box>’ which can factor the products of

two randomly chosen monic polynomials from C.

If we pick a random product PQ (mod n) and

give it as input to the magic box, there are at

most 22d monic factorization which can possi-

bly be returned as output. Since ST is one of

them and it is (information theoretically) indis-

tinguishable from the original factorization PQ,

the probability that all of P, Q, S, T will become

known is at least 2–2d, which is assumed to be a

constant. The algebraic form C was assumed to

be non-trivial, and thus at least one of the coeffi-

cients of the monomials in it is a rational function

which is non-constant modulo at least one of p and

q. Assume without loss of generality that the last

coefficient in C is a non-constant rational function

R(a, b,...) modulo q. The corresponding numeric

coefficients in P mod g and in S mod q are de-

rived from two independent random assignments

of values to the free parameters a, b,. . . in R, and

by Corollary 8 they are different with overwhelm-

ing probability. On the other hand, these numeric

coefficients in P mod p and S mod p are equal by

definition, and thus the GCD of n and the dif-

ference between the values of these coefficients in

P mod n and in S mod n is likely to be p. By

repeating this experiment sufficiently many times

for the same n and randomly chosen pairs of mul-

tivariate polynomials P and Q from C, we can

factor n with overwhelming probability. QED.

Remarks:

1.

2.

3.

5.

Note again the difference between the nu-

meric and polynomial versions of the prob-

lem: a number a can have at most 4 square

roots mod n = pq, whereas a multivariate

polynomial can have many more factoriza-

tion modulo the same n. In fact, if we let

d grow with the size of n, then with over-

whelming probability the known and com-

puted factorization of F would be different

modulo both p and q, and thus n would not

be split.

The proof can be easily extended to cases

in which the magic box manages to factor a

non-negligible fraction of its inputs (rather

than all of them). This just increases the

expected number of repetitions required in

order to factor n.

The general proof fails when P and Q are

chosen from different algebraic forms Cl

and C2, since the two factorization become

distinguishable and can no longer be “half

mixed”. This is a real rather than a technical

problem, as demonstrated by the ease with

which products such as (Z3 + ax + b)(z4 +

cx + d) (mod n) can be factored.

The Difficult of Solvin S#:ml
of Algebraic k quations h
Composite n
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An alternative way of looking at an alge-

braic factorization problem is to consider the set

of modular equations obtained by equating the

algebraic coefficients of PQ with the numeric co-

efficients of F.

Example: If C is defined as (z+ay+bz) (mod n),

then the factorization problem of (z+a’y+b’z)(z+

a“ y + b“z) (mod n) is equivalent to solving the five

equations:

a’+a” =il~ b’ + b“ = i2, a’a” = i37

b’b” = i4, a’b” + a“b’ = i5 (mod n)

where il, . . . i5 are the given coefficients of F.

Note that this is a system of five equations in

only four unknowns, which can be simplified to

a system of three equations in two unknowns by

exploiting the linearity of two of the equations.

As proven in the previous section, its solution is

at least as difficult as the factorization of n.

The difficulty of solving systems of algebraic

equations is a major research area in mathematics

and computer science, and there are many known

results. The diophantine case of solving one poly-

nomial equation in 13 unknowns over Z is unde-

cidable (Matijasevic and Robinson [1975]). Solv-

ing one quadratic equation in two variables over

IV is NP-complete (Manders and Adleman [1978]).

Solving a system of quadratic equations modulo a

prime p is NP-complete even when p = 2 (Fraenkel

and Yesha [1977]), but small systems of equations

can be solved efficiently by Grobner base tech-

niques. Solving one quadratic equation in one

unknown modulo a composite n is as difficult as

the factorization of n, but solving two quadratic

equations in one unknown is easy (since the solver

can eliminate the non-linear term Z2 from the two

equations). Some of the techniques developed for

solving such systems of equations are quite sophis-

ticated. For example, Pollard developed surpris-

ingly efficient heuristics for solving one quadratic

equation in two unknowns mod n even when the

factorization of n is unknown, and extended the

technique in a limited way to one cubic equation

in three unknowns.

Once again, most of the negative results

(which prove the unsolvability or the NP-

completeness of the problem) are worst case com-

plexities, and little seems to be known about the

complexities of solving random systems of equa-

tions of some particular form. Our main result

(recast as an equation solving problem) can be

viewed as one step in this direction.

Can we extend the proof technique from

factorization-based equations to more general

types of algebraic equations? Our proof technique

relied on five basic ingredients:

1.

2.

3.

4.

5.

Invariance. Square root extraction mod-

U1O a composite n is difficult since squaring

(mod n) is invariant under negation. Multi-

variate polynomials F are hard to factor into

PQ (mod n) since the product is invariant

under order. There are many other examples

of invariance which we may try to exploit.

Modularity. The operation should be appli-

cable not only mod n, but also separately

modulo each one of its factors p and q. The

chinese remainder theorem makes this possi-

ble whenever the operation is a rational func-

tion defined in terms of +,-,*,/.

Invertibility. The input and output of the

operation should have the same probability

of being chosen. This is easy to achieve if

the operation is uniquely invertible (with the

possible exception of a negligible subset of

inputs, where the output may be undefined).

In the case of negation, both o and –W are

uniformly distributed. In the case of com-

mutativity, PQ and QP are equally likely

choices of factors.

Non-triviality. The input and output of the

operation should be different with non negli-

gible probability. In our examples, v and –v

are different except for the unlikely choice

of v = O, and the pairs (P, Q) and (Q, P)

are different with overwhelming probability

whenever the algebraic form C is non-trivial.

Boundedness. The size of all the equivalence

classes under the operation should grow at

most polynomially with the size of n. In the

case of squaring modulo n each equivalence

class contains at most four values, and in the

case of polynomial multiplication each equiv-

alence class contained at most 22d monic

polynomials.
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Our goal now is to use these ideas in order

to prove that solving additional types of multi-

variate rational equations is at least as difficult as

factoring the modulus n. We first define:

Definition: A system of multivariate ratio-

nal equations of fixed degree d of the form

l?i(a,b,... )=~i(mo dn)fori =kiss aidsaid to

be randomly sotuable if the vi values are computed

by substituting uniformly distributed random val-

ues for the variables a, b, . . . in the Ri functions.

Randomly solvable systems of equations have

fixed left-hand sides, and a (possibly non-uniform)

probability distribution on their right-hand sides.

They are presented without the underlying choice

of values for a b>> ...> and the goal is to find some

values for a, b,. . . which satisfy the k equations.

The existence of at least one solution is guaran-

teed by the construction.

The main result in this section is:

Theorem 9: If a randomly solvable system of

equations is invariant under some invertible ratio-

nal transformation of the variables which is not

the identity, and the system is known to have at

most a polynomial number of solutions, then find-

ing any one of them is at least as difficult as the

factorization of the modulus n.

The proof is essentially the same as the proof

of Theorem 4, and is left to the reader.

Examples:

1, The factorization problem can be viewed as

a special case of this theorem: Each coeffi-

cient in F gives rise to an equation which

remains invariant if we exchange the un-

known variables al, b’, . . . defining P with the

corresponding unknown variables a
::, b!!

,.. .

defining Q, and Lemma 3 provides an upper

bound on the number of solutions.

2. The transformation does not have to affect

all the variables. For example, a2 + b2 + abc +

ad+bd= v remains invariant if we exchange

a and b, but leave c and d unchanged.

3.

4.

The transformation can be more general than

exchanging pairs of variables. For example,

the equation a2 + (a + b)2 = v remains in-

variant under the invertible linear transfor-

mation which replaces a by a + b and b by

–b.

The transformation can be rational rather

than linear. For example, the equation a3 –

b-3 = v remains invariant if we replace a by

–l/b and b by –l/a.

As demonstrated in these examples, there are

many types of operations which satisfy the invari-

ance, modularity, invertibility, and non-triviality

conditions. The tricky part in applying Theorem

9 is to bound the number of solutions of the given

system of equations. We expect the number of

solutions to be small if the equations are “ran-

domly looking” and there are more equations than

variables. Further evidence can be obtained by

actually solving the given equations modulo sev-

eral random moduli n’ with known factorization,

and counting the number of solutions. However,

such heuristic arguments can not be used to ac-

tually prove that solving a given system of equa-

tions modulo a given n with unknown factoriza-

tion is as hard as the factorization of the modulus.

What makes factorization-based equations special

is that the unique factorization theorem provides

an automatic upper bound on their number of so-

lutions, and there is no need to apply a case-by-

case analysis.

The generalized technique developed in The-

orem 9 can greatly extend the class of multivariate

polynomials whose factorization can be proven to

be as difficult as the factorization of the modu-

lus. For example, the hard factorization problem

of F = (z + ay)(z — ay) (mod n) was considered

an inadmissible case in our original formulation,

since the free parameters in P and Q were not in-

dependently chosen. However, mapping a to –a

is an invertible rational transformation which ex-

changes the definitions of P and Q and is not the

identity. The difficulty of factoring such a F can

thus be deduced from our extended formulation.

We can not use the same technique to prove the

(false) difficulty of factoring F = (Z + ay)(z + ay)

(mod n) since the mapping which exchanges P

and Q is the identity mapping, which is disal-
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lowed. Another example which was beyond the

scope of our original formulation is the problem

of factoring F = (Z2 + ay+ bz)(z2 - ay + (a+b)z)

(mod n). The simultaneous mapping of a to –a

and of b to a + b is an invertible rational transfor-

mation which exchanges the definitions of P and

Q and is not the identity, and thus the problem

of factoring such F is also as difficult as the fac-

torization of the modulus.
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