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Abstract 

A recent trend in cryptographic systems is to 

base their  encryption/decryption functions on ~P- 

complete problems, and in part icular on the knap- 

sack problem. To analyze the security of these 

systems, we need a complexity theory which is less 

worst-case oriented and which takes into account 

the extra conditions imposed on the problems to 

make them cryptographically useful. In this paper 

we consider the two classes of one-to-one and onto 

knapsack systems, analyze the complexity of recog- 

nizing them and of solving their  instances, intro- 

duce a new complexity measure (median complexity), 

and show that this complexity is inversely propor- 

tional to the density of the knapsack system. The 

tradeoff result is based on a fast probabil ist ic 

knapsack solving algorithm which is applicable 

only to one-to-one systems, and i t  indicates that 

knapsack-based cryptographic systems in which one 

can both encrypt and sign messages are re lat ively 

insecure. We end the paper with new results about 

the security of some specific knapsack systems. 

I .  Introduction 

Cryptography, which has always been considered 

an esoteric mixture of art and science, is rapidly 

gaining respectabil i ty as an important branch of 

complexity theory. One of the major reasons for 

this change is our increasing ab i l i t y  to prove (or 

at least to give strong supporting evidence) that 

certain computational tasks are inherently d i f f i -  

cul t .  Such results may be discouraging news for 

engineers, but in the context of cryptosystems they 

can make the construction of unbreakable super-codes 
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possible. In fact, cryptosystems may turn out to 

be the most important positive application of the 

theory of lower bounds, since they seem to be the 

only case in which impossibly d i f f i c u l t  computations 

are desirable. 

In spite of this close relationship, the tools 

of standard complexity theory are not very well 

suited to the needs of cryptography. Even when we 

solve the major open problems (such as the P~NP 

conjecture) we cannot claim that cryptosystems based 

on d i f f i c u l t  (e.g., NP-complete) problems are se- 

cure, for the following reasons: 

( i )  The standard measures of worst-case and average- 

case complexities are completely inadequate. The 

existence of some heuristic technique which solves 

a positive fraction (say, I/lOOO) of the instances 

in po'lynomial time is enough to make the crypto- 

system useless, even i f  the average case complexity 

of the heuristic is exponential or i f  i t  fa i l s  to 

work correctly on the vast majority of the cases. 

What we need is a theory of "almost everywhere 

d i f f i c u l t "  computational tasks. 

( i i )  Complexity theory usually considers the d i f f i -  

culty of a single isolated instance of a computa- 

tional task. In cryptanalysis, we are often given 

a big collection of related problems (e.g., many 

cyphertexts generated by a Common cryptosystem and 

key) to which we can apply s tat is t ica l  methods, 

analysis of repeated patterns, etc. I t  is not 

clear how to include such factors in the complexity- 

theoretic analysis of a cryptosystem. 

( i i i )  One cannot take an arbitrary d i f f i c u l t  compu- 

tational task and transform i t  into a cryptosystem. 

In order to be useful in secret-communication sys- 

tems, the encoding functions must be one-to-one, 

and in order to be useful in certain signature 
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generating systems, the encoding functions must be 

onto (or almost onto-see below). These extra con- 

d i t ions  (which are not usual ly dealt  with in com- 

p lex i t y  theory) can have a major e f fec t  on the 

secur i ty  of the cryptosystem. 

In order to handle these problems, a new 

theory of cryptocomplexity must be developed, with 

a par t i cu la r  emphasis on the cryptocomplexity of NP- 

complete problems. In th is  paper we consider the 

special case of the knapsack problem (upon which 

many of the newer cryptosystems are based) in order 

to get sharper resu l ts ,  but we believe that some of 

the ideas and resul ts can be extended to other NP- 

complete problems as wel l .  An excel lent  survey of 

the problems and achievements in th is  area can be 

found in Lempel [7 ] .  

2. Def in i t ions 

A cryptosystem is a co l lec t ion  of pairs con- 

s is t ing  of an encryption funct ion E K (which maps 

c lear texts in to  cyphertexts) and a decryptio 9 func- 

t ion D K (which maps cyphertexts back to c lear tex ts ) ,  

such that DK(EK(M))= M for  every c lear tex t  M and 

key K ( th is  implies that E K must be one-to-one). 

In c lassic cryptosystems, the two communicating 

part ies share a common pair  of encryption/decryption 

functions which enable them to communicate over in -  

secure channels. In publ ic-key cryptosystems [3 ] ,  

each user pub l i c ly  reveals his encryption funct ion 

but keeps his decryption funct ion secret. When 

user A wants to send a message M to user B, he can 

compute EB(M) qu ick ly ,  but only B can decrypt i t  

back to M. I f  in addi t ion EK(DK(M))=M for  every 

message M and key K ( i . e . ,  i f  E K and D K are inverse 

permutations over the same message space) then A 

can sign a message M by computing DA(M); th is  s ig-  

nature can be easi ly  authenticated by applying the 

pub l i c ly  known E A to i t ,  but i t  cannot be forged on 

other messages. 

In many cryptosystems, i t  is d i f f i c u l t  to 

make the funct ion E A onto, and thus not a l l  the 

possible messages can be signed. The density of a 

cryptosystem is defined as the f rac t ion of the 

signable messages among a l l  the messages. In high- 

densit~ cryptosystems th is  ra t io  is close to one, 

and thus messages can be signed e i ther  d i r ec t l y  or 

a f te r  a s l i gh t  perturbat ion of some unimportant 

b i ts .  In low-density cryptosystems, too many t r i a l  

perturbations are necessary and signatures become 

impract ical .  

Public-key cryptosystems based on NP-complete 

problems use the asymmetric re la t ion  between prob- 

lems and t he i r  so lut ions.  The easy encryption func- 

t ions assign to each solut ion ( :  c lear tex t )  some 

problem ( :  cyphertext) for  which i t  is the unique. 

so lu t ion,  and the d i f f i c u l t  decryption funct ions 

solve these problems in order to recover the o r i g i -  

nal c lear tex t .  The most popular of these crypto- 

systems use the knapsack problem, for  which we give 

a precise d e f i n i t i o n  below. 

A knapsack system K is a f i n i t e  sequence of 

natural numbers (@enerators) a I . . . . .  a n . A knapsack 

problem (or instance) is a knapsack system + a ta r -  

9et value b; the problem is to determine i f  b has a 

O-In valued representation c I . . . . .  c n such that 

i ~ i c i a i = b  ( in  a modular knapsack problem, th is  

equation should hold modulo a given modulus m). 

The knapsack problem is known to be NP-complete both 

in i t s  modular and in i t s  non-modular versions. The 

c lear texts  in a knapsack system K are the represen- 

ta t ions c I . . . .  ,c n while the cyphertexts are the 

corresponding target values b. The system is one- 

to-one i f  every target value has at most one repre- 

sentation in K (the possible target values in the 

non-modular case are a l l  the integers in the i n t e r -  
n 

val [0 , .~ a~], and in the modular case a l l  the 
i=! • 

integers in the in terva l  [O,m)). 

Knapsack systems seem to be an ideal source for 

encryption funct ions,  since they are numeric (and 

thus easy to implement e l e c t r o n i c a l l y ) , ' f a s t  (need 

n-I addit ions and possibly one modular reduct ion) ,  

and probably uniformly hard to inver t  ( in  the sense 

that there are extremely few knapsack systems for  

which fast  inversion algorithms or heur is t ics  are 

known). 

3. Characterizat ion of  one-to-one or onto 

knapsack syste~!s 

As described in the in t roduct ion ,  the crypto- 

graphica l ly  in te res t ing  knapsack systems are those 

which are one-to-one or onto. In th is  section we 

consider the problem of character iz ing these two 

sets of knapsack systems. 

From the p robab i l i s t i c  point of view, we have: 

Theorem I :  A random modular knapsack system with n 

generators and modulus m is l i k e l y  to be one-to-one 

when n < ½ log2m and non one-to-one otherwise. 

Proof (Sketch): For randomly chosen modular knap- 
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sack systems, the 2 n target values corresponding to 

the 2 n possible representations are distributed very 

uniformly (with possible repetitions) in the [O,m) 

interval. When successive representations are enu- 

merated (e.g., in lexicographic order on the n-bi t  

sequences) and their corresponding target values are 

marked on the interval,  the f i r s t  repeated marking 

of a point is l i ke ly  to occur around the V~ stage 

(this is a variant of the birthday problem in proba- 

b i l i t y  theory-see [4]).  Thus i f  2 n<v'm a repeated 

marking is not l i ke ly  to occur, while i f  2 n >v~T i t  

is. Interpreting a repeated marking as a knapsack 

system which is not one-to-one and taking binary 

logarithms of these inequalities give the desired 

result. Q.E.D. 

Theorem 2: A random modular knapsack system with n 

generators and modulus m is l i ke ly  to be onto when 

n > log2m+ log21og2m- log21og2 e and non-onto otherwise. 
Proof (Sketch): Using the random marking paradigm 

again, we would l ike to know how many points should 

be marked at random (with possible repetitions) on 

the [O,m) interval before a l l  the points are l i ke ly  

to get marked at least once. The ~robabil ity that 

a particular point remains unmarked after one mark- 

ing stage is l - I /m,  and after 2 n marking stages i t  

is 
Pm,n = (l - I /m) 2n. 

The expected number of unmarked points at the end 

of the marking process is m.Pm, n, and thus the knap- 

sack system is l i ke ly  to be onto when m.P < l and m,n 
non-onto when m.P > l .  To find an exp l ic i t  rela- m,n 
tion between m and n, we evaluate 

m ' P m , n = m ' ( l - ~ ) 2 n [ m "  :m.  ( l - } ) m ]  2n/m ~ m.e -2n/m 

The tu rn ing  po in t  is  when 

m.e -2n/m = 1 o r  m = e 2n/m. 

Taking repeated logarithms, we get 

log2m = ( 2 n / m ) l o g 2 e  

and then 

log21og2m = n- log2m+ Iog21og2e , 
which, after rearranging the terms, gives the de- 

sired result. Q.E.D. 

Example: A 200 element modular knapsack is l i ke ly  to 

be one-to-one when i ts  modulus and generators are 

over 400 bits long; i t  is l ike ly  to be onto when i ts  

modulus'and generators are less than 192 bits long. 

These results show that the expected complexity 

of solving instances of a random knapsack system 

wi th  n generators which are k b i t s  long is at most 

exponent ia l  in m in (n ,k ) ,  and thus systems in  which 

n and k are very d i f f e r e n t  should be avoided. The 

reason is  tha t  i f  n>>k ,  we can e l im ina te  a l l  but 

0(k+ logk)  of  the n generators and s t i l l  expect to 

be able to represent every ta rge t  va lue;  i f  k>>n ,  

we can consider  j u s t  the 2n lowermost b i t s  in  the 

generators and s t i l l  expect each representable t a r -  

get value to have only i t s  o r i g i n a l  representa t ion .  

Although these theorems give us some i n s i g h t  

in to  the average-case behavior o f  knapsack systems, 

they obv ious ly  do not enable us to decide whether 

a p a r t i c u l a r  knapsack system is  one-to-one, or onto. 

The d i f f i c u l t y  of  these decis ion problems is con- 

sidered in  the next group of  r esu l t s :  

Theorem 3: Deciding whether a given knapsack sys- 

tem is one-to-one is co-NP complete. 

Proof: The decision problem is clearly in co-NP, 

since there is always a short proof that a given 

system is not one-to-one (namely, the two represen- 

tations involved). 

To show completeness, we reduce the part i t ion 

problem to the non-one-to-one problem. The part i -  

t ion problem (which is NP-complete --see [6]) is to 
n 

decide whether the equation i~ ic ia i  = 0 has a solu- 

tion in which c i e { - l , + l }  for al l  i .  

Lemma 4: A knapsack system ai , . .~,a n is not one-to- 

one i f  and only i f  the equation i~ ic ia i=O has a 

non-tr iv ial  solution in which c i e { - l ,O,+ l }  for 

al l  i .  

Proof: I f  the knapsack system is not one-to-one, 

then some target value b has two di f ferent repre- 

, . .  c' and c~', . ,  c"" sentat ions c~ " '  n " '  n" 
n n 
Z c~a. : b ~ c" = b 

i= l  1 1 ' iml i a i  
I II in  which each c i = c  i - c  i is  - I ,  0 or + I ,  and at  

leas t  one of  the c i is not O. 

Conversely, i f  the equat ion has a n o n - t r i v i a l  

so lu t i on  c I . . . .  ,c n, l e t  us def ine 

, { I  i f  c i  = 1 ,, { I  i f  c i  = - I  
ci  : 0 otherwise c i  : 0 otherwise 

I t  is  easy to see thatn c i :  c i ' -  ci'' f o r  a l l  i ,  and 

thus the equat ion Z c i a . = O  impl ies 
i= l  1 

n n 
' = Z C "  i~ Ic ia i  i~l iai  , 

which gives two dif ferent representations for the 

common value of these terms. Q.E.D. 

Proof of Theorem 3 (continued): Given a part i t ion 

120 



problem a I . . . . .  a k, we would l i k e  to const ruct  a knap- 
k 

sack system a~ . . . . .  a~ in such a way tha t  % c ia i = O  
n i= l  'a '  has a so lu t ion  w i t h c  iE  { - l , + l }  i f f  i ~ i c i  i = O  has 

n o n - t r i v i a l  so lu t i on  w i t h i c ~ e { - l , 0 , + l } .  The n = 

2k -1  numbers a'. are def ined as fo l l ows :  
1 

23k .a i+  1 < i < k - I  23i 

 z3k.a + z3i i : k 
ai = | i i=l 

L2 23(i-k) k + l ! i < 2 k - I  

The easiest way to understand this reduction is to 

consider the numbers a~ as bi t  strings. The b i t  

strings of numbers a~ in the f i r s t  group are com- I 
posed of prefixes (into which the bi t  strings of 

the original a i are lef t -shi f ted)  plus 3k-bit suf- 

fixes (in which single characteristic bits are 

turned on). The number a' is simi lar ly defined, k 
except that al l  the characteristic bits of the pre- 

vious k - l  numbers are turned on in i ts suf f ix .  

Finally, the numbers a' i+k in the last group have 

empty prefixes, and their suffixes are (numerically) 

twice as big as those of the corresponding a'. num- 
I 

bers. 

To show that a~,.E.,a~k_l has the desired pro- 

perties, assume that S cia i=O has a solution with 
i=l 

c i e { - l , + l } .  We define the coefficients c~ in the 

following way: 

c i i f  i !k 

, 0 i f  i >k and c i_k ~ck 
ci = - l  i f  i > k  and ci_ k=c k=+l 

+l i f  i >k and ci_ k=c k=- I  . 
2k-l 

To show that iZ__l c~a~ =0, we consider separ- 

ately the prefix and suf f ix  regions in this equa- 

t ion. The prefix parts are not empty only in 

a~ . . . .  ,a'k. Since they are equal to a I . . . .  . a k and 

the coefficients c~ . . . . .  c~ are equal to c I . . . . .  c k, 

the prefix regions in the equation sum up to zero 

by assumption. In the suff ix parts, the i th group 
I of 3 successive bits is not empty only in a i 

I (where i t  is 001), in a k (where i t  is OOl) and in 

a'i+k (where i t  is OlO); our choice of c i', C'k and 

c' makes sure that al l  these 3-bit groups of bits i+k 
add up to zero, and thus the suffixes as a whole 

2k-l 'a'. 
add up to zero in i~ l c i 1" 

, . .  c' be any To show the converse, let c~ "' 2k-l 
2k-l 

non-tr iv ial  solution of i~ l c!a'.1 1 =0' with c i' 

{ - l ,O,+ l } .  Taking ci=c', for i = l  ,k and con- 1 5... 
sidering the prefix parts of these equations, i t  is 

k 
easy to see that i ~ i c i a i : O .  What remains to be 
done is to show that this solution is legal, i . e . ,  

that none of the c. is O. i 
Since the maximum summed value in each group 

of 3 successive bits in the suf f ix  is 4 (in binary 

OOl + OOl + OlO = lO0), there can be no carry from one 

group to the next, and thus each group must sum up 

to zero independently. The only coefficients 

(c~, c' c' ' ,  k' i+k ) which can make the groups OOl in a i 

OOl in a~ and OlO in a' i+k sum up to zero are 

(0,0,0), (+l ,+l , - l  ) , ( - l  , - l  ,+l ) , (+l,-1,0) and 

( - I ,+ I ,0) .  For different values of i ,  different 

coefficient t r ip le ts  can be chosen from this set, 
J provided that the common c k entries get consistent 

c' is values in al l  the t r ip le ts .  Since cy, . . . .  2k-l 

non- t r iv ia l ,  there is at least one i for which 

(c;,c~, c~+i)~ (0,0,0), and thus c ~ O ,  which im- 

plies that c l i O  for al l  l < i <  k. Q.E.D. 

Corollary 5: Deciding whether a given modular 

knapsack system is one-to-one is co-NP complete. 
n 

Proof: When m>i~lai_ the modulus is irrelevant, 

since no modular reductions can ever take place. 

Q.E.D. 

The situation with respect to the onto pro- 

perty is quite di f ferent:  

Theorem 6: Deciding whether a given knapsack sys- 

tem is onto is doable in polynomial time. 

Proof: We show by induction on n that the whole 
n 

interval [O, i~lai ]  is representable in the knapsack 

system a I . . . .  ,a n (in which the a i are arranged in 
nnn-decreasing order) i f f  a j < l  +J- l  _ i~ la i  for al l  
l < j < n  (this condition is clearly decidable in 

polynomial time). I t  is true for any single ele- 

ment knapsack system since [O,a]] is representable 

i f f  a I ! l .  

Let a I . . . . .  an+ l be.a t n+l element knapsack 
+ ~ a= for al l  I< j < n .  I f  system in which aj < l O-J 

- i = l  J 

an+ l > l  + i~ la i  =b, then the target value b cannot 
be represented although i t  is in the interval. On 

the other hand, i f  an+ l ib ,  then every target value 
n+l 

in [O, i~lai ]  is either in the subinterval [O,b-l] 

(where i t  is representable with Cn+ l : O  by the in- 

duction hypothesis) or in the subinterval [an+ l , 

an+ l + b - l ]  (where i t  is representable with Cn+ l 

= l ) .  Note that the two subintervals may overlap, 

and thus some target values may have representa- 

tions of both forms. Q.E.D. 

The complexity of the modular onto decision 
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problem is s t i l l  open. No simple characterization 

was found, and in fact i t  is not even clear whether 

the problem is in NP union co-NP. We conjecture 

that the problem is very d i f f i c u l t ,  perhaps even 

~2-complete ( i t  is in ~2 since i t  has the form "for 

al l  target values, there exists a representation" 

- s e e  [13] for more detai ls). 

These results show that we cannot effect ively 

characterize al l  the cryptographically-useful knap- 

sack systems. All we can hope for is to character- 

ize certain subsets of them, such as the Merkle- 

Hellman and the Graham-Shamir one-to-one knapsack 

systems described later in this paper. 

An interesting open problem is whether knap- 

sack problems remain NP-complete when restricted to 

knapsack systems which are one-to-one. The same 

question can be asked about the complexity of other 

similar ly restricted NP-complete problems (proposi- 

tional formulas with at most one satisfying model, 

graphs with at most one hamiltonian cycle, etc.).  

As far as we know, none of these problems have been 

shown to be either NP-complete or polynomially 

solvable. 

4. Properties of one-to-one knapsack systems 

A basic property of one-to-one knapsack 

systems, which w i l l  be used in the sequel, is: 

Theorem 7: Let a I . . . . .  a n be a one-to-one (modular 

or non-modular)knapsack system, le t  i be an arbi- 

trary index between l and n, and let  b and b+a i be 

two target values whose representations ( i f  they 
i exist) are denoted by c I . . . . .  c n and c i . . . . .  c n, 

respectively. Then: 

( i )  I f  both b and b+a i are representable, then 

c i = l  i f  and only i f  c~=O. 1 
( i i )  I f  b is representable but b+a i is not, then 

c i = I .  
( i i i )  I f  b+a i is representable but b is not, then 

I = 0 .  c i 
Proof: ( i )  I f  c i=c~.l =0' we can add a i to the 

representation of b ( i . e . ,  change c i from 0 to l )  

in order to get a second (and different) represen- 
I tation for b+a i .  I f  c i =c i = l ,  we can subtract a i 

from the representation of b+a i ( i .e . ,  change c~ 

from l to O) in order to get a second (and d i f fe r -  

ent) representation for b. Both cases clearly con- 

tradict  the assumption that the knapsack system is 

one-to-one. 

( i i )  I f  b had a representation in which c i 

= O, then by changing c i to 1 we would get a re- 

presentation of b+ ai,  and a contradiction. 

( i i i )  I f  b+a i had a representation in which 

c ! = l  then by changing c~ to 0 we would get a re- 
1 ' 1 

presentation of b. Q.E.D. 

This theorem shows that in one-to-one knap- 

sack systems, the sequence of c i values in the re- 

presentations of successive multiples of some fixed 

generator a i (O.ai, l . a i ,  2.a i . . . .  ) is extremely 

uniform. Denoting by ? the undetermined value of 

c i when the multiple is unrepresentable, a typical 

sequence is: 

OlOlOl?OlOl???OlOlOlOl??Ol . . . .  

This result is part icular ly important in modular 

systems, since the set of (modular) multiples of 

a i contains al l  the possible target values whenever 

a i and m are relat ively prime. 

We now turn to consider some transformations 

which can be applied to knapsack systems without 

changing their  one-to-one or onto character: 

Lemma 8: I f  a I . . . . .  a n (m) is a one-to-one (onto) 

modular knapsack system and d is re lat ively prime 

to m, then the augmented knapsack system dal, . . . .  

da n (m) is also one-to-one (onto). 

Proof: Since d is re lat ive ly  prime to m, i t  has a 

modular inverse, dd -I ~ l  (mod m), and thus 
n n 

i ~ i c i ( d a i  ) ~ b  (modm)~=-~i~icia i ~ b d  - I  (modm) . 

Consequently, the number of  representable ta rge t  

values in the two systems is the same, and mu l t i p l e  

representat ions occur in  one system i f f  they occur 

in  the other (w i th  ta rge t  values b and bd " I ,  res-  

p e c t i v e l y ) .  Q.E.D. 

Lemma 9: I f  a I . . . . .  a n (m) is a one-to-one (onto) 

modular knapsack system, then the knapsack system 

obtained by rep lac ing any subset of  the a i ' s  by 

t h e i r  complements m-a  i is  also one-to-one (onto) .  

Proof: I t  is  enough to show tha t  a s ing le  comple- 

mentation of  a I to m -a  I leaves the system one- to-  

one (onto) .  I f  b has two representat ions c I . . . . .  
I c n and c~ . . . .  ,c n in  the new system, then 
n n 

b ~ C l ( m - a l ) + i = 2 S  c . a . ~ c ~ ( m - a l ) + 1  1 i=2S c~a.l I (modm) , 

and thus 
n n 

b + ( C l + C ~ ) a l z c l a l  i : 2  I i : 2  ' + S c.a i z c l a  l +  % c~a (modm), 

! I , i . e . ,  c I ,  c 2 . . . . .  c n and c I ,  c 2 . . . .  ,c n are two 
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d i f f e ren t  representations of a common target value 

in the old system. S im i la r l y ,  b can be represented 

in the new system i f f  b+a I can be represented in 

the old system, since 
n 

b+a I = i ~ i c i a i  (mod m) 

n 

b = ( I - c ] ) ( m - a  I )  + i~2ciai  (modm) 
Q.E.D. 

We end th is  section with the fo l lowing tech- 

nical observation: 

Lemnla lO: I f  a l , . . . , a  n (m) is a one-to-one modular 

knapsack system in which u target values are un- 

representable, then m : 2n+u. 

Proof: The 2 n possible representations generate 2 n 

d i f fe ren t  representable target values; a l l  the 

other m-2 n possible target values are unrepresent- 

able. Q.E.D. 

5. Permutation knapsack systems 

The ideal knapsack system from the crypto- 

graphic point of view is one which is both one-to- 

one and onto ( i . e . ,  a permutation). While each one 

of  the two properties is believed to be very hard 

to check, t he i r  in tersect ion is surpr is ing ly  easy: 

Lemma 11: The knapsack system a I . . . . .  a n defines a 

permutation i f  and only i f  (under some reorderingl  

each a i is exact ly 2 i - l .  

Proof: An easy extension of the proof of Theorem 6. 

Theorem 12: The modular knapsack system a l ,  . . . .  a n 

(m) defines a permutation i f  and only i f  m=2 n and 

(under some reordering) each a i has the fo l lowing 

form: n - i  a rb i t ra ry  leading b i ts  followed by 1 

followed by i - 1  t r a i l i n g  zeroes. 

Proof: By Lemma I0, m=2 n. At least one of the 

generators (say, a l )  must be odd, since i f  a l l  the 

generators (and the modulus) were even, odd target 

values could not be represented in the system. 

This odd generator is r e l a t i v e l y  prime to m, and 

mul t ip ly ing  a l l  the generators by all(modm) thus 

creates a new normalized knapsack system l , a ~ , . . . ,  
I a n (m) which is also one-to-one and onto by Lemma 8. 

A l l  the mult ip les 0 . I ,  I . I ,  2.1, 3.1 . . . .  of 

the f i r s t  generator are representable, and thus by 

Theorem 7 the coe f f i c ien t  c I al ternates between 0 

in the representations of even numbers and 1 in the 

representations of odd numbers. Since the genera- 
l tors a~ . . . . .  a n have t r i v i a l  representations of the 

form 0 . . .010 . . .0 ,  they must a l l  be even. 

The proof can now proceed by induct ion. Since 

the generators, the modulus and the representable 
I numbers are al l  even in the subsystem a 2 . . . . .  al(m),, 

we can divide them by 2. Applying the characteri- 

zation in the theorem to the permutation system 

a~/2,. . . ,a~/2.  (m/2), we know that each a~/2 

( 2 < i < n )  ends with a 1 followed by i - 2  t r a i l i n g  

zeroes, and thus each a~ ends with a 1 followed by 

i - I  t r a i l i n g  zeroes. Since a i z a  I a~ (mod 2 n) 

and a I is odd, th is  also characterizes the struc- 

ture of the or ig ina l  generators a i .  

The other d i rec t ion  (showing that any modular 

knapsack system with th is  structure defines a per- 

mutation) is l e f t  for  the reader as an easy exer- 

cise. Q.E.D. 

As noted by many researchers, the complexity 

of inver t ing permutation encryption functions can- 

not be any higher than ~ = NP n co-NP, and thus i t  is 

not l i k e l y  to be NP-complete. (The uniqueness of 

the solut ion enables us to give short proofs both 

for  the question " is  there a solut ion sat is fy ing 

property P" and to i t s  converse "do a l l  the solu- 

t ions sa t i s fy  ~P".) In the special case of  

knapsack-based encryption funct ions,  we can use the 

character izat ion theorems in order to get the 

stronger resu l t :  

Corol lary 13: A l l  the knapsack problems generated 

by (modular or non-modular) permutation knapsack 

systems are polynomially solvable. 

Proof: In the non-modular case, there is only one 

permutation knapsack system of each size, and i t  

defines an identi ty mapping. In the modular case, 

there are 2 n(n-l) /2 non-isomorphic permutation 

knapsack systems of size n (they d i f fer  in the 

leading bits of the generators), but their struc- 

ture makes i t  easy to determine successive ci's in 

the representation of each b (c I =0 i f f  b is d iv i -  

sible by 2, c2=0 i f f  b-Cla I is div is ible by 4, 

etc.).  Q.E.D. 

Thus, unlike the Rivest-Shamir-Adleman factor- 

ization cryptosystems (see [ I l l ) ,  no single 

knapsack-based cryptosystem can both encode and 

sign arbitrary messages. 

What happens when the onto condition is al-  

lowed to have a few exceptions? An i l l us t ra t i ve  

result is: 

Theorem 14: The modular knapsack system a I . . . . .  a n 

(m) is one-to-one, and onto with a single exception 

b o, i f  and only i f  m =2n+l  and (under some 
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reordering) each a i is e i ther  al .2 i - l (modm) or 

m- a 1,2 i - I  (modm). 

Proof: We f i rS t  show that a l l  the generators a i 

are r e l a t i v e l y  prime to the modulus m = 2 n + l .  I f  

(a i , m ) > l ,  then the cycl ic  sequence of numbers 

b o + l + O - a  i ,  b o + l + l . a  i ,  b o + l + 2 - a  i . . . .  (modm) 

contains fewer than m d is t i nc t  elements, and in 

par t i cu la r  i t  does not contain b o. Consequently, 

a l l  these numbers are representable, and by Theorem 

7 the c i in the i r  representations a l ternate between 

0 and I .  The length of the cycle must therefore be 

even, but th is contradicts the fact that th is 

length must also be a d iv isor  of the odd modulus m. 

We can now mul t ip ly  the generators by al  I in 
I order to normalize the knapsack system to l , a  2 . . . .  , 

a~(m). Since m is odd, exactly one of each 

a~,m-a~ pair  is even and thus by Lemma 9 we can 
I I  transform th is  knapsack system to l ,a~ . . . . .  a n (m) 

in which a l l  the generators except the f i r s t  are 

even, and in which they are l i s ted  in non-decreasing 

order. I f  we can show that a ~ : 2  i - I  for  a l l  i ,  we 

get the desired character izat ion of the or ig ina l  

knapsack system by unwinding the two normalizing 

transformations we applied to i t .  

The sequence of  c I values in the representa- 

t ions of m successive mult iples of the generator 1 

has the fo l lowing form: 

0101 ...01 ?0101...01. 
I I  I I  Consequently, the subsystem a 2 . . . .  ,a n represents 

a l l  the even target values in the range [O,bo) and 

a l l  the odd target values in the range (bo,m). 
I I  Since the generators a2,...,a"n themselves are even, 

they are a l l  smaller than b o. 

I f  there is any odd target value in [O,m) 
I I  which is representable in a~ . . . . .  a n (m), l e t  b I be 

the smallest. By changing some c i from 1 to 0 in 

the representation of b I ,  we get a representation 

of the smaller odd target value b l - a  i (modular 

wraparound cannot occur since a i < b o < b l )  -- a con- 
I I  I I  t rad ic t ion .  Thus a 2 . . . . .  a n can represent only 

even target values in [O,m) and b = m - I  = 2 n 
. 0 n . " 

I f  (without modular reduction) i=Z2ai>_m, there 

is some j such that b2 = j~la':<i=2 1 m and b 3 =b2+aj_" >m. 
As a sum of even generators b 2 (modm) is even, but 

b 3 (modm) (which is actually b2+a j -m)  is odd. 

This contradicts the assumption that no odd number 
I I  in the interval [O,m) can be represented in a 2 . . . . .  

I I  

a n (m). 

This leaves us with a one-to-one knapsack 

system a 2 " ' "  na" in which a l l  the even numbers are 

representable and in which no modular reductions 
n 

can ever take place (since Z a" < m) By Lemma 
i = 2 i  

I I ,  the only knapsack system having th is property 
,, = 2 i - I  is a i , 2 < i < n .  Q.E.D. 

A s imi lar  (but somewhat more complicated) 

character izat ion was found for  modular one-to-one 

knapsack systems which are onto with two exceptions. 

We haven't carr ied out th is detai led analysis any 

fur ther ,  but we conjecture that a l l  the modular 

one-to-one knapsack systems with s u f f i c i e n t l y  high 

density are recognizable in polynomial t ime, and 

that a l l  t he i r  associated knapsack problems are 

solvable in polynomial time. The character izat ion 

problem is l i k e l y  to get harder and harder as the 

density decreases, since in the absence of  the 

density condit ion i t  is co-NP complete. 

6. A new complexity measure fo r  cryptographic 

systems 

As described in the in t roduct ion,  both the 

worst-case and the average-case complexity measures 

are inadequate in the context of cryptography, 

since the securi ty of a cryptographic system de- 

pends on the complexity of the easiest (rather than 

the most d i f f i c u l t )  instances of the underlying 

problem. When a cryptanalyst t r ies  to decode a 

batch of intercepted messages, he does not crack 

them in sequence, regardless of computational 

e f f o r t .  Instead, he determines a threshold of 

e f f o r t  beyond which indiv idual  decoding attempts 

are abandoned. The cryptanalysis is l i k e l y  to 

succeed i f  a s u f f i c i e n t l y  high percentage of the 

possible messages is decodable wi th in th is time 

threshold. Note that the actual complexity of the 

unsolved cases (which can have a strong inf luence 

on the average-case complexity) does not matter in 

th is model. 

The new complexity measure, which we cal l  

median complexity, is essent ia l ly  a worst case 

measure on the easier ha l f  of the instances. More 

formal ly ,  we define: 

Def in i t ion :  A problem P(x) (where P is a predicate 

or a function on instances x) has a median complex- 

i t y  C(n) i f  there exists an algorithm A for  i t  such 

that for  each size n, A solves at least ha l f  the 

instances x whose size is n wi th in time C(n). 

124 



An obvious generalization of this definit ion 

is to replace the "half" by a fraction parameter 

O < s < l ;  the resul tant  percent i le complexity C(n,s) 

gives for each n and s the complexity of the easiest 

of the instances of size n. 

Example: Consider the fo l lowing fac to r i za t ion  prob- 

lem: For each input x (a natural number in binary 

notat ion) ,  we have to p r in t  out "PRIi4E" i f  x is a 

prime number, and some non - t r i v i a l  factor i f  x is 

composite. The median complexity C(n) of th is  prob- 

lem is 0 ( I ) ,  since for ha l f  the numbers of  each 

size, 2 is a non - t r i v i a l  factor .  The algorithm can 

be extremely slow on the odd inputs (say, using 

exhaustive search) without a f fec t ing  th is  median 

complexity. What is the percent i le  complexity of  

th is  factor ing problem? 

The new complexity measure enables us to de- 

f ine the fo l lowing important property of problems: 

De f in i t i on :  A problem is uniform i f  there is a 

polynomial q which bounds i t s  worst-case complexity 

q(~--)C(n'So)4^ for  every f rac t ion s o and C(n,~) to 

algorithm that solves i t .  

This de f i n i t i on  states that fo r  each f ixed 

f rac t ion so, the worst case complexity C(n, l )  is not 

much bigger than the complexity of the easiest %o f  

the instances, and thus a d i f f i c u l t  uniform problem 

is not l i k e l y  to have sizeable easy subsets of in -  

stances. An example of a problem with a uniform 

behavior was recent ly discovered by Rabin [ I 0 ] .  He 

considered the (apparently d i f f i c u l t )  problem of 

taking square roots modulo a composite number m, 

and showed how to transform each instance of th is  

problem into any other instance, with uniform pro- 

b a b i l i t y  distribution. By trying 0(~ random trans- 

formations, any C(n,c~ algorithm for taking the 

square roots of a fraction soof the numbers modulo 

can be made a probabil istic O(~C(n,c~)) m, algorithm 

for taking the square roots of al l  the numbers 

modulo m. 

Randomly chosen modular knapsack systems with 

many more generators than bits (see Theorem 2) 

seem to have a similar uniform behavior, although 

in a less rigorous sense of the word. The transfor- 

mation in this case consists of subtracting a ran- 

dom subset of the f i r s t  half of the generators from 

the target value b, and representing the new target 

value b' in terms of the second half of the genera- 

tors. I f  each half of the generators is an onto 

knapsack system, then b can be transformed to any 

other target value b' ( t y p i c a l l y  with a f a i r l y  un i -  

form d i s t r i b u t i o n ) ,  and any such b' has a repre- 

sentat ion. The coef f i c ien ts  of the generators in 

both halves give us a legal representation of  the 

or ig ina l  target value b. 

In the next section we demonstrate the usefu l -  

ness of  the new complexity measure by showing that 

the median complexity of solving modular knapsack 

problems is inversely proport ional to the density 

of t he i r  associated systems, and thus a l l  the very- 

h igh-densi ty one-to-one modular knapsack systems 

(which we were unable to characterize e x p l i c i t l y )  

are cryptographica l ly  insecure. Both the worst- 

case and the average-case complexity measures seem 

to be inadequate for  th is  purpose. 

7. Tradeoffs between the density and security of 

modular knapsack systems 

A simple way of motivating our result is as 

follows. I f  a complicated but smoothly-behaving 

function f has to be evaluated at many points, i t  

makes sense to precompute a table of values of f 

at a suff ic ient ly dense grid of points. When an 

actual argument b is given, we look up the values 

of f at the closest grid neighbors of b, and use 

them in order to interpolate f(b). I f  the function 

has some isolated discontinuities, this technique 

can be applied only to those arguments b whose grid 

cell does not contain a discontinuity. We thus get 

a t r ip le  tradeoff between the number of discontinu- 

i t ies ,  the grid size, and the fraction of the 

arguments b for which f(b) can be interpolated 

from the table. By f ixing this fraction to one 

half, we get a relationship between the number of 

discontinuities and the complexity of precomputing 

the table (as determined by the grid size). 

A similar situation exists in high-density 

one-to-one modular knapsack systems. Theorem 7 

shows that the relationship between target values 

and representations in these systems is very smooth, 

with potential discontinuities only at the unrepre- 

sentable target values (whose exact locations are 

usually unknown). I f  b and b' are two suff ic ient ly 

close locations in the O-l-? c i sequence (which we 

introduced after Theorem 7), we expect their values 

to be equal i f  I b -b '  I is even, and opposite i f  

I b -b '  I is odd. Consequently, we can interpolate 

the value of c i at b from the value of c i at i ts 
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closest grid neighbor b ~ whenever the two locations 

are in the same cont inu i ty  in terval  between succes- 

sive question marks. I f  these question marks are 

few and far between, we can use a small number of 

grid points in order to correct ly  in terpo la te  the 

value of c. at most of the locat ions. 1 
We can now describe the densi ty-securi ty 

t radeof f  resul t  in de ta i l .  Given a one-to-one mod- 

ular  knapsack system a I . . . . .  a n (m) in which m >> u 

= m-2 n, we would l i ke  to f ind a representation for  

a given target value b. We make the s impl i fy ing 

assumption that ( a i ,m )= I  for a l l  i ,  and thus each 

generator can be normalized to I .  (Generators 

with a small gcd can be handled by s imi lar  tech- 

niques, while generators with a large gcd, i f  there 

aren' t  too many of them, can be handled by brute- 

force methods once the coef f ic ients  c i of  the other 

generators are determined.) 

We proceed in n stages. At the j th  stage, we 
n 

change the equation . ~ c i a  i : b  (modm) into 
n -I -I l= i  • • .th 

~S~c~(a~ a~) = a~ b(modm) in which the 3 genera- 
/ : /  " 1 ~ " d - - l  
to r  a~'ajv is 1 and the target value is aj b, but in 

which the coef f ic ients  c. remain unchanged. Succes- 

sive mult ip les of the j tn  generator become succes- 

sive integers, and thus the coef f i c ien t  cj in the 

Ib-th representation of a] Ib is just  the aj entry 
3 

in the appropriate 0-I--? sequence. 

We next choose a random set of r representa- 

t ions,  and enumerate the i r  corresponding target 

values in the augmented system (the exact value of 

r w i l l  be determined l a te r ) .  Since these repre- 

sentations are in a one-to-one correspondence with 

the representable target values, we get a uniform- 

ly  d is t r ibuted grid of r locations along the 0-I 

parts in the 0-I-? sequence, whose values are 

known. The desired cj value is then interpolated 

in the usual way, and the tenta t ive  co l lec t ion  of 

coef f ic ients  c I . . . . .  c n calculated in the n stages 

is eventual ly ve r i f i ed  by d i rect  subst i tu t ion.  

The most time-consuming part in th is  process 

is to f ind the closest grid neighbor of the loca- 

t ion we want to represent. We use a va r i an t ' o f  

Horowitz and Sahni's algorithm [5] .  We divide the 

(modified) generators into two halves, and prepare 

for  each ha l f  a random l i s t  of O(v~f) representation/ 

target  value pairs. I f  x and y are target values 

in the f i r s t  and second l i s t ,  respect ively,  then 

x + y  (modm) is a target value whose representation 

in the complete system is the concatenation of x 's 

and y's representations in the i r  respective ha l f  

systems. Among the O(r) possible sums we can f ind 

the one that best approximates a given value z in 

the fo l lowing way. We f i r s t  sort each one of the 

two l i s t s  into increasing target  value order, using 

a l i near  time bucket sort .  Start ing with Xmi n + 

Ymax' we replace x by i t s  l ist-successor whenever 

the sum is smaller than z, and replace y by i ts  

l ist-predecessor whenever the sum is bigger than z 

(always recording the best approximation found so 

fa r ) .  We stop wilen we h i t  z or when one of the 

two l i s t s  is exhausted. In our modular case we 

have to repeat the process twice, with z=a~Ib and 

=a~Ib+m, but the to ta l  time complexity is ~ s t i l l  Z 

0(vw). 
Our algorithm successfully f inds the represen- 

ta t ion of an (o r ig ina l )  target value b only i f  i t  

is successful in a l l  i ts  n stages. At each stage 

there is a certain f ract ion of target  values for  

which the in terpo la t ion  gives erroneous resul ts ,  

but by making th is f rac t ion smaller than I /2n,  we 

can guarantee that no more than hal f  of  the target 

values w i l l  be incorrect ly  processed at some stage. 

What remains to be done is to show that for  

an appropr iately chosen number r of gr id points,  

each stage can be made correct for  a l l  but a I/2n 

f ract ion of the target values. 

Def in i t ion :  Given a 0-I-? sequence, the radius of 

locat ion b in i t  is the shortest cycl ic  distance 

from b to a question mark. 

Lemma 15: For every 0-I-? of length m with u 

question marks, the f rac t ion of the locations which 

have radiuses smaller than • is at most ~ . 

Proof: In the interval  of radius -~-- ~around each 
4n u 1 m 

question mark there can be at most 2n u loca- 

t ions,  and thus the number of locat ions which are 

that close to any one of the u question marks is 

at most p~m. Q.E.D. 

By choosing a random grid of ,  say, r =lO00.n.u 

locations along the 0-I-? sequence, we get an 

average grid separation of 1 m and thus lO00n u ' 
p rac t i ca l l y  a l l  the locations whose radiuses are 

than 1 m bigger • T w i l l  be closer to a gr id point 

than to a question mark. Although some grids are 

better and some grids are worse in th is respect, 

the average grid qua l i ty  (which is what we are 

interested in when we consider p robab i l i s t i c  
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algorithms) is excel lent  and does not depend on the 

knapsack system or on the target value involved. 

Using th is  r value, we get: 

Theorem 16: The p robab i l i s t i c  median complexity of 

solving instances of a one-to-one modular knapsack 

system with modulus m, n generators and u unrepre- 

sentable target values is at most O(n3/2ul/2). 

Proof: Each one of the n phases takes O ( ~ . n . u )  

time, and the tota l  is thus O(n3/2ul/2). For every 

knapsack system with the above parameters, the a l -  

gorithm succeeds (with a very high p robab i l i t y  that 

does not depend on the system) in f ind ing the re- 

presentations of at least one ha l f  of the possible 

target values. Q.E.D. 

This algorithm is considerably faster  than the 

best known 0(2 n/2) algorithm [5] whenever the knap- 

sack system is very-high-densi ty (m ~ 2 n >> u), 

and i t  indicates that knapsack systems in which one 

can both encrypt and sign messages may be danger- 

ously overloaded. Although the resu l t  does not 

d i r ec t l y  apply to medium-density (m ~ 2 n ~ u) knap- 

sack systems, i t  seems best to use d i f fe ren t  types 

of knapsack systems for  these two tasks, such as a 

low-density (m • u >> 2 n) Merkle-Hellman system 

[9] for  encryption and an onto but non one-to-one 

system (Shamir [12]) for signature generation. 

8. Some spec i f ic  knapsack-based cryptographic 

systems and t he i r  secur i ty  

In t he i r  paper, Merkle and Hellman define a 

par t i cu la r  class of one-to-one knapsack systems, 

which can be used in order to encrypt messages in 

publ ic-key cryptosystems. 

Def in i t ion :  A sequence a I . . . . .  a n of  natural num- 

bers is superincreasing i f  for each 1 < j < n  
j - I  

aj > i~ l  ai" 

De f in i t i on :  A knapsack system a I . . . .  ,a n is a 

r4erkle-Hellman system i f  there are two r e l a t i v e l y  

prime numbers m and w such that w- la l  (modm) . . . . .  

w-la n (modm) is a superincreasing sequence whose 

sum is smaller than m. 

A simple example of  a superincreasing sequence 

is 1,2,4,8 . . . . .  2 n. Considered as a knapsack sys- 

tem, i t  is always one-to-one, and there is an easy 

algorithm for  solving a l l  i t s  instances by succes- 

sive subtract ions. By Lemma 8, the Merkle-Hellman 

systems are also one-to-one and the i r  instances can 

be solved by the same algorithm ( i f  m and w are 

known). 

The procedure i~erkle and Hellman recommend for  

choosing a knapsack system is :  

( i )  Choose a superincreasing sequence a~ . . . . .  

a~o 0 in which each a!l is randomly chosen from the 
in terval  [(2i-1,1)-2100+1, 2i-1,2100] (it  is a 
99+ i  b i t  natural number). 

( i i )  Choose a random m from [2201+1 ,2202 - I ] .  

( i i i )  Choose a random w from [ 2 , m - 2 ] ,  and 

repeat th is  step i f  (m,w)> l .  

( i v )  Compute a i=w.a~ (modm) for  1 < i < l O 0 .  

(v) Publish a I . . . . .  alO 0 in the communication 

network d i rec tory ,  keeping m and w secret. 

The secur i ty  of th is  cryptosystem depends on 

the fact that the a i generators are pseudo-random 

numbers, and only the legi t imate user (who knows 

m and w) can decode messages in ti le shortcut 

method. 

The 

secur i ty  

s tar t ing point for  our analysis of the 

of these systems was the fo l lowing chal-  

lenge in Merkle and Hellman's paper: 

"Attempts to break the system can s ta r t  with 
s imp l i f ied  problems (e.g. ,  assuming m is 
known). I f  even the most favored of c e r t i -  
f i ca t i ona l  attacks is unsuccessful, then 
there is a margin of safety against c leverer,  
weal th ier ,  or luck ier  opponents. Or, i f  
the favored attack is successful, i t  helps 
to establ ish where the secur i ty  rea l l y  
must reside. For example, i f  knowledge of 
m allows so lu t ion,  then an opponent's un- 
cer ta in ty  about m must be large."  

Theorem 17 (Adi Shamir, Richard Zippel) :  The 

knowledge of m makes any standard-parameter 

Merkle-Hellman system h igh ly  vulnerable to crypt-  

analysis.  

Proof: The key observation is that a~ and a~ in 

the unknown superincreasing sequence are much 

smaller than m ( for  the recommended parameters, 

they are I00, lOl and 202 b i ts  long, respect ive ly) .  

Since m is known, the cryptanalyst  can calculate 

q = a l / a  2 (modm) . But a i=w.a~ and thus q=a~/a~ 
(modm) or a~ =a~.q (modm). 

Consider now the set S ={k.q(modm)II <k<2101},  

Since a½~2 I01, a~-q (modm)(Which is equal to a~) 

is in th is  set. The 2101modular mul t ip les in S 

are very evenly d is t r ibu ted  in [ O , m - l ] ,  and thus 

the smallest number among them is l i k e l y  to be 
around m/2 I01 ~ 2202/2101 = 2101 . But a~ is known 

to be smaller than or equal to 2100 , and thus a~ 

i t s e l f  is l i k e l y  to be the smallest number in S. 
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Consequently, a l l  we need in order to f ind (a candi- 

date for) a~ is to f ind the minimum value of k.q 

(modm) when k ranges over [1,2101 ] and q,m are 

known. E f f i c ien t  methods for solving th is number- 

theoret ic  problem (using the continued f ract ion 

approximation of the ra t io  q/m) can be found in [2] 

and [8] .  Q.E.D. 

I t  is easy to see that for  other choices of the 

parameters, th is cryptanaly t ic  attack has a good 

chance of success only when at .a}  is not much 

bigger than m, which suggests one way in which the 

securi ty of the i~erkle-Hellman systems can be en- 

hanced. Another way was discovered (independently) 

by Ron Graham and Adi Shamir. The danger repre- 

sented by the extremely small f i r s t  few elements of 

the superincreasing sequence can be el iminated by 

adding some high-order noise bi ts in the fo l lowing 

way: 

a~ = (random b i t s ) (on- i l o i - l ) (o . .O) ( random b i ts ) .  
1 

The block of zeroes is log2n bi ts wide, and i t s  

purpose is to "absorb" the addi t ion carr ies gener- 

ated by the low order random bi ts .  

Sums of subsets of these numbers are decodable 

with no ar i thmet ic operations at a l l  (the charac- 

t e r i s t i c  1 b i ts in the a! keep track of the sum- 1 
mands). To hide the structure of these numbers, 

we mul t ip ly  them by w (modm) , and publish the 

resul tant  generators a I . . . . .  a n (keeping w and m 

secret). This var iant  of Merkle and Hellman's 

scheme resists the cryptanalyt ic  attack described 

in Theorem 17, and i t  thus seems to be safer, 

faster  and simpler to implement than the or ig ina l  

var iant .  

Another way of using knapsack systems for 

cryptographic purposes was f i r s t  suggested to the 

author by Benjamin Arazi [ I ] .  To encrypt a 

(numeric) message M in such a system, the sender 

computes the sum R of a random subset of the pub- 

l ished generators, and sends M+R over the communi- 

cation channel. The huge number of possible R 

values makes i t  impossible for  an eavesdropper to 

compute M from M+R without knowing the secret 

structure embedded in the published knapsack system. 

We propose using a modified Graham-Shamir 

system, in which the characteristic l ' s  in the a! 
1 

- i  numbers are changed to O's; the resultant a i 

numbers are structurally indistinguishable, and 

the generators ai in the published system are de- 

f ined in the usual way as ai : w.a~ (modm). The 

number of generators k in this scheme need not be 

related to the message size n. 
k 

Upon receiving an encrypted message M+i~ir iai_ 

(where the r. are unknown random b i t s ) ,  the user 
1 k 

ca lcu lateskw- l [M+i~ r i~ i  ] = ~  (modm) which is equal 

to w-IM+ E r.a!(modm). Due to the special struc- 
i=l  1 I k _ 

ture of the ~ numbers, the sum i~ i r ia~  has in i ts  

middle a "transparent window" of n successive zero 

b i ts ,  which enables n successive bi ts of w-IM to 

be ~'seen through" in w-IM+ ~ - '  By res t r i c t i ng  
-I i = I r i a i "  

w to have the appropriate size, these v i s i b le  

b i ts can be made the high-order b i ts  of w-lj~, 

from which the n bi ts of M can be extracted by a 

single div is ion-with-remainder operation. 

We ( in formal ly)  claim that th is  random addi- 

t ion scheme is at least as secure as the Graham- 

Shamir scheme. The knapsack systems used in the 

random addit ion scheme seem to be tougher, since 

they are not necessari ly one-to-one, and even the i r  

publisher need not know any easy way for  solving 

the i r  instances ( in fac t ,  none may ex i s t ) .  Further- 

more, given a Graham-Shamir knapsack system a I . . . .  , 

a n , i t  is easy to see that the numbers ai = 

2a i - a i +  l a l l  have the "transparent window" struc- 

ture, and thus al . . . .  'an-I can be used in a random 

addition scheme. This transformation makes any 

cryptanalytic attack on the published generators 

in random addition systems a cryptanalytic attack 

on Graham-Shamir systems (but not necessarily vice- 

versa). 

An important advantage of random addi t ion 
k 

systems is that the random sums i ~ i r i a i  do not 

depend on the messages, and thus can be prepared 

in advance and added to M in a single step. This 

enables an extremely fast response time to encryp- 

t ion requests, which is important in many rea l -  

time appl icat ions.  
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