
The Discrete Log is Very Discreet

A. W. Schrift and A. Shamir
Department of Applied Mathematics

Weizmann Institute of Science
Rehovot 76100, Israel

A b s t r a c t

In this paper we consider the one-way function
fg,N(X) = gX (modN) , where N is a Blum inte-
ger. We prove that under the commonly assumed
intractabili ty of factoring Blum integers, almost all
its bits are individually hard, and half of them are
simultaneously hard. As a result, fg,N can be used in
efficient pseudo-random bit generators and multi-bit
commitment schemes, where messages can be drawn
according to arbi trary probabil i ty distributions.

1 I n t r o d u c t i o n

A function f(x) is one-way if it is easy to com-
pute but hard to invert. One-way functions have
numerous cryptographic applications in public-key
cryptosystems, pseudo-random bit generation, com-
mitment schemes and so on. Several explicit con-
structions of one-way functions have been suggested
under some plausible number-theoretic assumptions.
One such candidate is the exponentiation function
fg,p(X) = gX (modP) , where P is a prime and g is
a generator of Z~, (IBM]). Its inverse is the discrete
logarithm function, for which no efficient algorithms
have been found. Another problem that is considered
to be highly intractable is that of factoring a number
which is the product of two large primes. Among
the one-way functions that are based on the difficulty
of factoring are the RSA / Rabin functions ([RSA],
[Ra]), as well as the quardratic residuosity problem

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.

and its related root extracting function ([BBS]).

An interesting property of one-way functions is the
existence of hard bits in the argument which can-
not be computed by any family of polynomial-size
Boolean circuits with 1/2-t-1/poly probabil i ty of suc-
cess. This notion was extensively investigated in the
early 1980's, culminating in proofs that some specific
bits in these number theoretic functions (usually the
most significant or the least significant O(log n) bits
of the n-bit argument) are individually hard ([BM],
[ACGS], [BBS]), and that those O(log n) bits are also
simultaneously hard ([LW], [ACGS], [VV]). All the
subsequent efforts to extend the techniques to prove
the individual or simultaneous security of O(n) bits
in these number theoretic functions failed.

Goldreich and Levin [GL] have shown that every
one-way function has at least a logarithmic number of
hard bits. Extending their result to prove that more
bits are hard without imposing any assumptions on
the one-way function is conjectured to be impossible,
since a function may be one-way and still depend only
on a small fraction of its bits. Explicit constructions
of one-way functions for which all the bits are secure
do exist, but they rely on the composition of hard
bits from many one-way flmctions (rather than on a
single application of a natural function, e.g. in the
probabilistic encryption functions of [GM], [BG]).

Besides its theoretical significance, proving a one-
way function to have many simultaneously hard bits
can improve the efficiency of many cryptographic
schemes. Very recently Impagliazzo and Naor ([IN])
have introduced an efficient pseudo-random bit gener-
ator based on the combinatorial one-way function cor-
responding to the subset sum problem. Their novel
construction makes it possible to obtain O(n) pseudo-
random output bits from each application of the func-
tion on random inputs, but does not necessarily im-
ply that the input bits of the function are individu-
ally or simultaneously hard, leaving the problem of
constructing a natural function with O(n) secure bits

© 1990 ACM 089791-361-2/90/0005/0405 $1.50 405

open.
In this paper we consider the well known one-way

function fg,g(X) = gX (m o d g) , where N is a Blum
integer. We prove that under the sole assumption
that factoring Blum integers is difficult, almost all its
bits are individually hard, and the lower half of them
are simultaneously hard. As a result, fg,N can be
used in efficient pseudo-random bit generators with
O(n)-bi t output per stage and in mult i-bi t commit-
ment schemes, in which the messages can be drawn
according to arbi trary probabil i ty distributions. We
also quote the recent improvements of Johan Hastad
[Ha] who extended our techniques to prove that in-
deed all the bits of fgjv are hard and that the upper
half of the bits are also simultaneously hard.

The paper is organized as follows: In section 2 we
give the various definitions and assumptions used. In
section 3 we deal with the individual bits security of
fg,N and in section 4 with the simultaneous bit secu-
rity. We present some applications of our enhanced
security results in section 5 and discuss several exten-
sions of our work in section 6.

2 P r e l i m i n a r i e s

Let N = P . Q, where P , Q are distinct odd primes,
and let n be the binary size of N. Let Z~v be
the multiplicative group containing the elements in
[1, N] that are relatively prime to N. The order
of an element g E Z~v , ordg(g), is the smallest
c > 1 such tha t gC = 1 (modN) . We denote
maxgezT~ {ordN(g)} by ON. Clearly:

ON = lcm(P - 1, Q - 1) < (P - 1)(Q - 1)
- 2

We refer to any g as a generator despite the fact that
no g can generate all the elements in Z~v for com-
posite N.
De f in i t i on : For a given g let G C Z~v be the set of
elements generated by it, i.e.:

G = {Zlthere exists X e Z~v s.t. Z = gX (modN)}

Note that the number of elements in G equals
ordN(g).
Def in i t i on : Fix a constant k. A high order g is an
element for which:

1 . (p _ l) (Q - 1) . ordN(g) >__ -~

A careful counting argument , for which we grate-
fully acknowledge Noga Alon, shows that a substan-
tial fraction of the elements in Z~v have high order:

P r o p o s i t i o n 1:
Let P and Q be randomly chosen primes of equal size,
N = P . Q, and g a randomly chosen element in Z~v ,
then:

() 1 . (p _ l) (Q _ l) < 0 Pr ordN(g) < ~

The proof will appear in the full version of this paper.
D e f i n i t i o n : Let g E Z~v • The exponentiation mod-
ulo composite function is defined by:

fg,N(X) -~ gX (m o d g) .

Its inverse, the discrete log modulo composite, is de-
fined only for Z E G by:

S; ,~(Z) = X,

for the unique X < ordg(g) s.t. Z = fg,N(X).
Note that while the values of fa,g range from 1 to
N, f~,~ outputs only values up to ordlv(g) which is
strictly smaller than N.

Following is a list of the assumptions that are used
throughout this paper. Unless otherwise mentioned,
we shall assume tha t all these assumptions hold, even
though some of our results can be derived without
some of them.
A s s u m p t i o n a . l : P and Q are of equal size.
This assumption is commonly used in cryptography,
and is believed to strengthen the intractabil i ty of fac-
torization.
A s s u m p t i o n a.2: P = Q = 3 (mod 4).
If the assumption holds, every square in Z~v has
exactly one square root that is also a square. Hence,
squaring is a permuta t ion of the quadratic residues.
The numbers N = P . Q for which both assumptions
hold are called Blum integers.
A s s u m p t i o n a.3: g is a quadratic residue.
We refer to any g for which assumption a.3 holds as an
admissible generator. Note that Proposition 1 holds
even if we restrict N to be a Blum integer and g to
be an admissible generator.
I n t r a c t a b i l i t y a s s u m p t i o n [Y]: No family of
polynomial-size Boolean circuits can factor a poly-
nomial fraction of the Blum integers.
De f in i t i on : An admissible triplet (g, N, Z) is such
that:
1. N is a Blum integer.
2. g is an admissible generator.
3. Z E G .
The collection of admissible triplets can be efficiently
sampled, i.e. it is possible to pick a random admis-
sible triplet using a polynomial amount of resources
(time, random bits).
A well known result ([na], [Ch]) is:

406

T h e o r e m 2:
Under the intractabil i ty assumption, the exponenti-
ation modulo a Blum integer, fg ,N(X), is a one-way
function.
P r o o f :
We present the simple proof of this theorem as it
demonstrates some of the basic techniques that are
crucial for our results. We establish that it is possible
to plant a short yet hard secret inside the argument
of fg,N, and use that fact extensively in the sequel.

Define Y = 9N (modN) = fa,N(N). Let S =
f~,IN(Y) = N - d . ordN(9), where d is the largest
multiple of ordiv(9) for which S is non-negative. Let
ISI denote the binary size of S. The following key
lemma proves that S is extremely small:
L e m m a 2.1:

IsI n/2 + 0(1)

P r o o f : It is well known that for any g E Z~v :
ordg(g)]Og, and therefore ordN(g)](P - 1) (Q - 1).
Assume now that ordN(g) > P + Q - 1 ,~ 2v/-N. In
that case it is easy to see that (P - 1)(Q - 1) is the
largest multiple of ordlv (g), which is still smaller than
N: (P - 1) (Q - 1) < N, but (P- -1) (Q-1)+ordg(g) =
N - (P + Q - 1) + ordg(g) > g . Therefore by defi-
nition: S = N - d .ordg(g) = N - (P - 1) (Q - 1) =
(P + Q - 1). For g such that ordg(g) <_ P + Q - 1,
we get S < ordg(g) < P + Q - 1, which completes
the proof of the lemma.

Assume that fa,N is not a one-way function, i.e.
there exists a family C of polynomial-size Boolean
circuits that computes f ~ l (z) successfully on a non-
negligible fraction of the Blum integers, N, the gen-
erators g E Z~v and the elements Z E G. We use
C to factor a non-negligible fraction of the Blum in-
tegers, thus contradicting the intractabili ty assump-
tion. Let B be the set containing the polynomial
fraction of the Blum integers for which C computes
f~ ig(Z) successfully on a non-negligible fraction of
g E Z~v and Z E G. Given N E B we use C to
compute S by applying standard randomization tech-
niques, and subsequently try to factor N using S in
one of the following methods:
M e t h o d 1: For g such that OrdN(g) > P + Q -
1: S = (P + Q - 1). Hence, by solving the two
equat ions: S = P + Q - 1 and N = P . Q we get the
full factorization of N.
M e t h o d 2: Let go be a random element in Z~v ,
and let g = g0 2. Let k be the largest integer such
that 2 k l (N - S). As g is an admissible generator,

"(N--S)12k is g (lv-s)/2k = 1 (modN) and therefore so
a square root of 1 modulo N. With probabili ty 1/2
g (N - S) / 2 k
0 ~ :/:1, which enables the factorization of

N. Note that while method 1 succeeds for almost all
N E B, method 2 works for every N E B with ar-
bitrarily high probability, but requires the knowledge
of a square root of g. I---]

3 T h e H a r d B i t s o f fg ,g(x)

For a number U let u,~...ui denote the binary rep-
resentation of U, with un being the most significant
bit and ui being the least significant bit. Note that
most significant bit always refers to the n-th bit in
the binary representation, even when U ranges over a
smaller interval of possible values. A substring uk...uj

k of u , . . .u i (1 < j < k < n) will be denoted by uj .
D e f i n i t i o n H . I : The i-th bit of the function fg,g
is hard if no family of polynomial-size Boolean cir-
cuits can, given a random admissible triplet (g, N,
Z), compute the i-th bit of f~,~c(Z) with probabili ty
of success greater than 1/2 + f /poly(n), for any poly-
nomial poly(n).
Note that we use the direct definition of hardness (as
in [BM]) rather than defining a bit to be hard if its
approximation is as hard as computing f - 1 (as in 9,N
[LW]).
T h e o r e m 3:
For every 1 < i < (1 - ¢) n , with ~ an arbitrarily small
constant, the i-th bit of fg,g is hard.

Our result left open the question of the individual
bit security of the extreme left bits (i > ¢n). This was
recently solved by Johan Hastad [tta] who proved:
T h e o r e m 4:
For every i : n/2 < i < n - O(logn) the i-th bit of
fg,Y is hard.

Proving the individual (as well as simultaneous)
security of the O(log n) most significant bits of fg,g
calls for a new definition of security for bits that are
a-priori known to be biased (and therefore can be
trivially predicted with probabil i ty greater that 1/2).
Following the work in [SS] we can define this notion
and prove the individual bit security of all the bits.

Let xi be the i-th input bit of the function fg,g
and denote its bias towards 0 by b(i). Note that only
for i >_ n - O(log n) the bias is significantly greater
than 1/2, yet the definition we give is valid for any
bias.
D e f i n i t i o n H.2: xi is hard if for any family C of
polynomial-size Boolean circuits that is given a ran-
dom admissible triplet (g, N, Z), and for any poly-
nomial poly(n):

1
- - • P r (C = xi[C = 0)+
b(i)

1 1
+ - - • P r (C = z i l C : 1) ,~ 2 --~ - -

1 - b(i) poly(n)

407

T h e o r e m 5:
The O(log n) most significant bits of fg,N are hard.

We now present the full proof of Theorem 3 which
contains most of the new techniques and procedures
that are needed to obtain the above results.
P r o o f o f T h e o r e m 3:
O v e r v i e w :
Suppose that for a certain i, the i-th bit is not
hard. Then, there exists a polynomial-size oracle
(circuit) C : (g , g , z) --* {0,1}, (where (g, N, Z)
is an admissible triplet) that succeeds with probabil-
ity exceeding 1/2 + 1/n ~ in predicting the i-th bit of
f~,)v(Z), for some constant k. As in Theorem 2 let
y = gN (modN). We use the oracle to factor N, by
computing all the bits of S -1 =/'g,N(Y) and following
one of the reductions of Theorem 2.

Intuitively, we can regard the oracle as a one-bit
window into the i-th position in a long unknown se-
quence of bits. By moving the sequence underneath
the window, we can see everything in it. We there-
fore need a method to shift the unknown S to the
right and to the left, by operating on the known
Y. We should be careful not to cause a wraparound
(i.e. reduction of the shifted S modulo the unknown
ordN(g)), by zeroing some known bits of S while op-
erating on Y. The shifts to the left result essentially
from squaring Y. We cannot perform the shifts to
the right by extracting square roots of Y , since that
cannot be done in polynomial time when the factor-
ization of N is unknown. Instead we develop a special
technique by which the right shifts result from chang-
ing the base g of the exponentiation function, and us-
ing the fact that squaring modulo a Blum integer is
a permutat ion over the (randomly chosen) admissible
generators.

As the oracle may err, one peek through the win-
dow in not enough. We 'collect votes' on the value
of the i-th bit by querying the oracle on polynomi-
ally many random multiples of the original input,
and use a majori ty vote to decide the value. To per-
form this randomization we have to guess an esti-
mate of the unknown ordN(g) as an upper bound on
the random choices, thus preventing the occurrence
of a wraparound. Since the multiplication involves
the addition of the known exponent of the random
value with the unknown argument of fg,N, we should
handle with care the unknown carry into the i-th bit
position from the addition of their least significant
i - 1 bits. We solve the problem by guessing the
value of the O(logn) bits right to the i-th bit and
zeroing them. A straightforward implementation of
this guessing strategy for each bit positior~ leads to an
exponential algorithm, but a more careful implemen-
tation can make sure that only a polynomial number

of candidates for the value of S exist.
We begin the proof with a detailed description

of the bit-zeroing, shifting and randomization tech-
niques, which provide us with the necessary tools for
extracting S. We then separate the proof into three
possible cases and show:

1. The middle bits (n/2 - O(logn) <_ i <_ n/2 +
O(log n)) are hard (Proposition 3.1).

2. Every bit to the right of the middle (1 __< i <
n/2 - O(log n)) is hard (Proposition 3.2).

3. Every non-extreme bit to the left of the middle
(n /2+O(logn) < i < (1 - e) n for any ¢) is hard
(Proposition 3.3).

The actual extraction of S in this theorem involves
the basic Forward-Extract procedure, where the un-
known bits of S are computed from the least signifi-
cant to the most significant. We describe the proce-
dure and its use in detail while proving the proposi-
tions. In the appendix we present a more complicated
Backward-Extract procedure, where the bits are dis-
covered from the most significant to the least signif-
icant. The Backward-Extract procedure is essential
to the proofs of Theorems 4 and 5 (and later 8). It
can also be used instead of the Forward-Extract pro-
cedure in propositions 3.1 and 3.3 but in that context
it has no advantage.

We shall henceforth assume that the randomly cho-
sen g is of high order and perform our analysis accord-
ingly. The small probability that g is not of high order
(Proposition 1) is taken into consideration in our final
error estimation of deriving an incorrect value for S.
M a i n T e c h n i q u e s :
Let Y = fg ,g(g) , for U < ordg(g). Let m be the
location of the leftmost non-zero bit in the binary
representation of ordy(g), on..ol, i.e.: oj = 0 for rn+
1 < j < n, but o,~ = 1. Note that for high order g:
n - O (l o g n) < m < n. Note also that uj = 0 for
m + l < _ j < n .
B i t - Z e r o i n g T e c h n i q u e :
The operation of zeroing a known j - th bit of U (while
operating on V) is denoted by ZRj(g , V). It is easy
to see that:

ZRj(g, V) = V. g- j 2J-, (modlV)

Shifting Techniques:
Shifting t o t h e lef t : Assume we are guaranteed
that Urn = 0, and we know u,~-l . We shift the se-
quence of bits um-1...ul one bit to the left, while
zeroing the new m-th bit of the shifted U, by using
the knowledge of m and urn-1 to transform V into

408

(ZRm- l (g , V)) ~ (modN). We cancel um-t to pre-
vent the shifted value of U from becoming greater
than ordN(g) and causing an overflow, which will en-
tirely change the value of U by subtracting from it
ordg(g). As ordN(g) and therefore m are unknown,
we have to guess the value of m (a similar note applies
to the randomization technique).
Sh i f t ing to t h e r igh t : We can shift the sequence
of bits representing U one bit to the right, with the
known least significant bit falling off, by transform-
ing V into ~ (modN), under an appropri-
ate choice of one of the four possible square roots.
However, square roots modulo N cannot be efficiently
computed without knowledge of the factorization of
N, so we have to compute it in an indirect way.

Assume now that g was not arbitrarily chosen, but
created by squaring rood N another admissible gen-
erator g'. Let V' = fg,,g(U). Using the knowledge of
V' and of the least significant bit of U we get:

shifted U = f~,~c(ZRt(g', V'))

As V ~ depends on U, if U is unknown V ~ is also un-
known. However, since we only use the technique to
obtain shifts of S -1 = f ; ,N(Y) for Y = fg,N(N), it is
easy to derive Y' = fa,,N(S) via Y' = fa,,N(N).

We can use this method to perform a bounded
number of shifts to the right. In order to perform at
most k shifts to the right, we prepare in advance the
sequence: {gjl~+ljj=0, where gJ = gj-12 (modN), and
use g = gk+l as the base of the exponentiation func-
tion. Since squaring is a permutat ion of the quadratic
residues modulo a Plum integer N, a random choice
of go will produce a random admissible g for any k.

Note that assumptions a.2 and a.3 are needed only
to enable the right shifts, and can be dropped when-
ever right shifts are not performed.
R a n d o m i z a t i o n T e c h n i q u e :
We perform the randomization by querying the oracle
on polynomially many inputs of the form: (g, N, V •
gn) for randomly chosen n-bit R = rn.. .r l such that
0 < R < OrdN(g). We then determine the value of ui
by a majority vote.
Two main problems arise:

1. Despite our knowledge of R, we cannot know
whether a carry from the addition of the i - 1
least significant bits of the known R and the un-
known U effects the i-th bit of the sum, and thus
we cannot infer ui from the answers of the oracle
for the i-th bit. If, on the other hand, we were
guaranteed that U i _ l . . . U i _ O (l o g n) - - 000...0, we
could discard the possibility of a carry except in
the low probability event that ri-1 . . . r i - - O (l o g n) =

111...1. As the actual values of U i _ l . . . U i _ o (l o g r t)

are unknown, we try out all their (polynomial
number of) possible values. For each value we act
as if it was the correct value, zero it and compute
the unknown bit ui accordingly. Our procedures
for the extraction of S make sure that the am-
biguity concerning its value remains polynomial,
so that an exhaustive search can find the correct
value.

2. The order of g, ordN(g), is unknown, and cannot
be computed in polynomial time. We can guess
an approximation e = em...el of ordN(g) (which
enables a sufficiently random choice of R) by the
following three stages:
1. Pick 0 _< n - m _< O(log n) (using O(log log n)
random bits),
2. Pick a value for em-1...em-oOog,O,
3. Set all the lower order bits of e to zero.

P r o p o s i t i o n 3.1:
For every i : n/2 - O(log n) < i < n/2 + O(log n) the
i-th bit of fg,g is hard.
P r o o f :
To simplify the presentation, assume that we are
given an oracle for the n /2- th bit. It is easy to see that
the same reasoning applies to all i : n/2 - O(log n) <
i < n/2 + O(log n). We extract the half-sized secret
S by using the following method:
T h e F o r w a r d - E x t r a c t P r o c e d u r e :

1. Shift S n/2 - O(log n) bits to the left. This will
not cause a wraparound for high order g.

2. Guess the O(logn) least significant bits of S
which have not passed under the oracle's loca-
tion, and then zero these guessed bits to prevent
any carry into the oracle's location during the
randomization.

3. Let Y~ denote Y after the transformations of pre-
vious stages. Let sj be the bit that is currently
at the oracle's location. Deduce s I by querying
the oracle on sufficiently many random multiples
y i . gR (modN), for R < e (see previous discus-
sion of randomization technique), and zero it.

4. Shift S one bit back to the right, placing sj+l
at the oracle's location. The right shifts may
be performed directly whenever S is located to
the left of its original location. (See the note
following the proof of Proposition 3.3 for further
discussion).

5. Repeat stages 3-4, to extract all bits, sj,
O(log n) < j < n /2 + O(1).

409

I . . . 0 . . .

6. Repeat previous stages for each of the (polyno-
mial number) of initial guesses at stage 2.

The correct value of S among the nO(l) resulting can-
didates from the procedure is chosen by trying to fac-
tor N with each computed S.

The following scheme illustrates the position of S
during the procedure. We denote an unknown value
of a bit by a question mark. All bits that are known a-
priori to be zero are denoted by a zero. Bits of S tha t
were discovered or assigned values and subsequently
zeroed are denoted by an exclamation mark. The
n /2- th bit, where the oracle is located, is indicated
by a box.

Before the procedure begins:

... ? ...

After stages 1,2: _~ ~ O(log n)

. . . 0 . . . 01 ... ? ...

During the procedure (stages 3-5):

... 0 ...

I 0 I ? 1 1 0
Finally:

I . . . 0 . . . 1 "'" ! "'"

It is not difficult to show that:
C l a i m 1.1: The procedure yields at most nO(1) pos-
sible values for S.
C l a i m 1.2: With non-negligible probabil i ty one of
the values is the correct value of S, where the proba-
bility is over the possible values of g, N and R.
C l a i m 1.3: The above procedure can be used to fac-
tor a non-negligible fraction of the Blum integers with
an overwhelming probabil i ty of success, by trying ran-
dom admissible g's. V--]

P r o p o s i t i o n 3.2:
For every i : 1 < i < n / 2 - O(logn) , the i-th bit of
f g , g is hard.
P r o o f
Assume that for some 1 < i < n / 2 - O(logn) , the
i-th bit is not hard. In that case we use a simpli-
fied version of procedure Forward-Extract . As we
shift S i bits to the left (stage 1 of Forward-Extract ,
where i substi tutes the n/2-shift) , we know that all
the i - 1 least significant bits are 0. We can therefore

extract the successive bits of S, by repeatedly per-
forming stages 3-4 of procedure Forward-Extract for
all bits s j , 1 < j < n /2 . In this simplified version we
need not guess the least significant bits of S (stage
2), whereas in Proposition 3.1 some of the bits of S
remain to the oracle's right after the initial shift so
that stage 2 cannot be avoided.

To make the right shifts possible (after the first
i shifts which merely move S back to its original
position, but leave n / 2 - i of the bits of S un-
known) we must use the general right shift tech-

e "hn]2-{-I
nique. We choose a random go, create igi)i=0 with
gi+1 = g~ (modN) and use g = gn/2+1 as the base of
the exponentiation function. Since by assumption a.2
squaring is a permuta t ion over the admissible gener-
ators, randomly choosing go will result in a random
g, thus ensuring tha t the oracle is correct for g with
a non-negligible probability.
C l a i m 2.1: The Simplified Forward-Extract proce-
dure yields a single value for S.
C l a i m 2.2: With non-negligible probabil i ty the value
is the correct value of S, where the probabil i ty is over
the possible values of g, N and R.
C l a i m 2.3: The procedure can be used to factor a
non-negligible fraction of the Blum integers with an
overwhelming probabil i ty of success, by trying ran-
dom admissible g0's. l---q

P r o p o s i t i o n 3.3:
For every i : n /2 <: i < (1 - c)n, where ~ is an
arbi trary small constant, the i-th bit of fg,N is hard.
P r o o f :
Assume that for some i = (1 - c ~) n , where ~ <

< 1/2, the i-th bit is not hard. The main prob-
lem we face here, is that S can be shifted at most
n / 2 - O(log n) bits to the left to avoid a wraparound,
leaving n / 2 - c~n + O(log n) of the bits of S right
to the oracle's location. Such a large number of bits
cannot be guessed efficiently. To solve that we use
procedure Forward-Extract as an internal routine to
extract blocks of c~n consecutive bits of S, and repeat
the use of the routine 1/c~ times to fully extract S.
While the bits of each block are discovered from the
rightmost bit to the leftmost one, we s tar t with the
block that contain the most significant bits of S and
finish with the block of the least significant bits, each
time using the knowledge of the already extracted bits
to move S further to the left and place more unknown
bits under the oracle.

We begin by shifting S n / 2 - c~n bits to the left,
having s,~/2 located at the i-th bit. We then use pro-
cedure Forward-Extract to extract the possible values
of Snl2...Sn/2-cm, where at stage 2 we guess the val-
ues of s,~-~,~+O(logn), ..., sn-~,~. We cannot discard
any of the possibilities yet, since we can try to factor

410

N only when most of the bits of S are known. We
can, however, try each of the results for Sn/2...Sn/2--an
and zero it to enable an additional shift of S up to an
bits further to the left without causing a wraparound,
so that we can perform yet another Forward-Extract
procedure for 8 n / 2 _ c ~ n . . . S n / 2 _ 2 a n . In general, at the
j - th stage (1 < j < 1/o 0 of the extraction pro-
cess we zero each of the recently discovered values
for s~-(j -1)a~. . . s , - j~n to enable further left shifts of
S and to discover s,_j~ S n _ (j T 1) a n . The process
increases the number of final candidates for S from
poly(n) to polyl/c*(n), but for non-extreme locations
this remains polynomial. Therefore:
C la im 3.1: For any fixed a the above process yields
at most n°(1) possible values for S.
C la im 3.2: With non-negligible probability one of
the values is the correct value of S, where the proba-
bility is over the possible values of g, N and R.
C la im 3.3: The above process can be used to factor a
non-negligible fraction of the Blum integers with an
overwhelming probability of success, by trying ran-
dom admissible g's. I--']

N o t e : The shifts to the right in propositions 3.1 and
3.3 move S back at most to its initial position but
not further to the right. Therefore it is possible to
perform the right shifts directly without using the
general shift to the right technique. An efficient im-
plementation of these right shifts involves saving the
intermediate results of the initial shifts to the left
and reusing them. As a result Propositions 3.1 and
3.3 can be altered to hold for any high order g with-
out assumptions a.2 and a.3. For such generators the
extraction of S remains unchanged and the factoriza-
tion of N (now not necessarily a Blum integer) is still
possible via method 1.

4 The S imul taneous ly Hard
Bits of fg .N

In the following section we define the strong no-
tion of simultaneous security, which states that it is
computationally hard to succeed with non-negligible
probability in computing any information whatsoever
about groups of bits of fg,g. We then show that fg,g
is indeed secure in that sense.
Def in i t ion : p] : [1, N] ~ {0, 1) k-j+1 is the function
p](U) = uk...uj, with k > j .
Def in i t ion : The bits of fg,g at locations j < i < k
are simultaneously hard, if k -1 (p~ (f-a,N(Z)), Z) is poly-
nomially indistiguishable from (x~, Z) for randomly
chosen admissible (g, N, Z) and a random (k - j + 1)-
bit string x].

Def in i t ion : The i-th bit, j < i < k, of the func-
tion fg,g is relatively hard to the right (to the left)
if no family of polynomial-size Boolean circuits can,
given a random admissible triplet (g, N, Z) and in
addition the i - k (j - i) bits of f~,}v(Z) to its right

(left), compute the i-th bit of f~,}v(Z) with probabil-
ity of success greater than 1/2 ~- 1/poly(n), for any
polynomial poly(n).
P r o p o s i t i o n 6:
The following conditions are equivalent:
1. The bits of fg,N at locations j < i < k are simul-
taneously hard.
2. Each bit j < i < k of f~,~ (Z) is relatively hard to
the right.
3. Each bit j < i < k of f~,}v(Z) is relatively hard to
the left.
The proof of this equivalence involves a careful ap-
plication of the techniques implemented in Yao's well
known proof of the universality of the next bit test
[',q.

T h e o r e m 7:
The n /2 right hand bits of fg,Y are simultaneously
hard.

The techniques used to prove this theorem were
recently extended by Johan Hastad [Ha] to yield:
T h e o r e m 8:
The n /2 left hand bits of fg,g are simultaneously
hard.
P r o o f o f T h e o r e m 7:
By Proposition 6 it suffices to show that every right
hand bit of fg,g is relatively hard to the right. In
general, even if each bit is individually hard, it does
not immediately imply the simultaneous hardness of
all bits: In order to use an oracle for a relatively weak
to the right i-th bit, all the i - 1 least significant bits
of the unknown value must be supplied too, a very
hard task in general. However, careful analysis of the
Forward-Extract procedure shows that such a task is
possible.

Let X = f ~ (Z) . Assume that the theorem is
false, i.e. for some 1 < i < n/2 there exists an oracle
C(g, N, Z, x~ -1) (for admissible triplets) that suc-
ceeds in predicting xi with probability 1 / 2 + 1/n k, for
some constant k. We extract the bits o f S = f~,}v(Y),
where Y -- gg (modN) using procedure Forward-
Extract in exactly the same way as in Theorem 3
(either directly or in its simplified version, according
to the location of i). The only difference is in the
queries to the oracle, where we have to supply the
i - 1 least significant bits of the argument. By ex-
amining both versions, it is easy to see that after the
initial shift to the left and for each subsequent right
shift and bit-zeroing of S (corresponding to a certain
transformed value Y' of Y) the i - 1 least significant

411

bits of -1 , f'g,N(Y) are zero. Therefore the i - 1 least

significant bits of Y' • gR are the known bits of R,
i-1, which can be given to the oracle. I--'1 r I

5 Applications

5 . 1 C o m m i t m e n t S c h e m e s

Several cryptographic schemes require a party to
commit to a certain message without revealing any
information on the content of the message. The
message is drawn out of an arbitrary collection,
which may be very sparse. Most known commitment
schemes are designed to hide single bits. Multi-bit
commitment improves the efficiency of existing pro-
tocols as presented in [KMO]. Recently Naor has
presented a multi-bit commitment scheme [Na] using
any pseudo-random bit generator. We construct a
different scheme that uses fg,N directly.

The simultaneous security of the n/2 right hand
bits of fg,N implies that fg,N hides n/2 uniformly dis-
tr ibuted bits. To use fg,g in a multi-bit commitment
scheme, it should be proven that fg,g hides O(n) arbi-
trarily distributed bits in a polynomially secure man-
ner. We now formally define the notion of simultane-
ous security with respect to non-uniform probability
distributions, prove that most of our results still hold
and construct a simple multi-bit commitment scheme
accordingly.
Def in i t ion : A probability distribution function
(pdf) over the n-bit variable X is right non-uniform
if:
1. x xnl2+l are uniformly distributed, and
2. x,~12...Xl are arbitrarily distributed.
Let D(g, N, Z) denote any pdf of admissible triplets
in which:
1. g and N are uniformly distributed.
2. the distribution of Z is induced by a right non-
uniform pdf, P(X), of X -1 : fL (z).
Def in i t ion : The /-th bit of the function fg,N is D-
hardif the conditions of definition H.2 hold under the
probability distribution D(g, N, Z).
Let p] be the function defined in section 4.
Def in i t ion : k right most bits of fg,g are simulta-
neously D-hard, if (p~(f~,~(Z)), Z) is polynomially
indistiguishable from (x~, Z), for D-distributed ad-
missible (g, N, Z) and P-distr ibuted k-bit x~.
T h e o r e m 9:
The n/2 right hand bits of fg,N are simultaneously
D-hard. In particular for every 1 < i < n/2 the i-th
bit of fg,N is D-hard.

S k e t c h o f Proof."
The proof of the theorem is essentially a non-uniform
version of the proof of Theorem 7. If the theorem is
false then in particular there exists a certain assign-
ment, A, for the n/2 right hand bits of f~,~¢ such that
(A, fg,N(RoA)) is polynomially distinguishable from
(A, Z), where (g, N, Z) is a D-distributed admissible
triplet, and R is a randomly chosen (n/2 - O(log n))-
bit string, s.t. R o A < ordlv(g). However the proof
of Theorem 7 can be strengthen to show that for any
specific n/2-bit message, A, (A, fg,N(RoA)) is poly-
nomially indistiguishable from (A, Z) for uniformly
distributed admissible (g, N, Z) and a random R
which is defined as above. Exploiting once again
the fact that we work in the non-uniform complex-
ity model leads to the conclusion that the same holds
when the admissible (g, N, Z) is D-distributed.

Note that the theorem can be proven in the uniform
complexity model under the additional assumption
that the distribution P (and therefore D) is polyno-
mially samplable (as in JILL]). I'---]

By Theorem 9 it is possible to commit to a n/2-
bit value M by choosing randomly N and g, picking
a uniformly distributed (n/2 - O(logn))-bi t R s.t.
R o M < ordg(g) and sending Z = fg,N(R o M),
where o denotes concatenation. In particular the the-
orem implies that the existence of even a single pair
of messages (chosen by the opponent) whose commit-
ted values can be efficiently distinguished will lead to
the factorization of N:
C o r o l l a r y 9.1:
Let M0, M1 E {0, 1} hI2, be any pair of n/2-bi t mes-
sages. Let Zi = fg,N(RO Mi), i = 0,1, with R
a uniformly distributed (n/2 - O(logn))-bi t string
such that R o Mj < ordg(g). Then, (Mi, Zi) and
(Mi, Zl-i) are polynomiMly indistiguishable.

In order to perform the above commitment in prac-
tice it is necessary not only to verify that a ran-
domly chosen generator has high order (which hap-
pens with high probability), but to know the exact
order of the generator (to ensure and prove that R
has been chosen correctly). Recall that ordlv(g) di-
vides (P - 1) (Q - 1) . Thus in practice the factorization
of (P - 1)(Q - 1) must be known to the party that
chooses the commitment scheme, by carefully choos-
ing the primes.
D e f i n i t i o n [BM]: A prime P of size n is hard if P =
tP' + 1, where P ' is a prime and 1 < t < poly(n).

Since hard primes have an asymptotically poly-
nomial density among the integers of the sequence
tP' + 1 IBM] hard primes can be found efficiently.
The commitment protocol will be performed in prac-
tice using a Blum integer which is the product of ran-
domly chosen hard primes, and its security will rely

412

on a somewhat stronger assumption, namely that no
family of polynomial-size Boolean circuits can factor
a polynomial fraction of the Blum integers that are
the product of hard primes.

5.2 P s e u d o - R a n d o m Bi t G e n e r a t i o n

Any one-way function can be used for the construc-
tion of a pseudo-random bit generator, due to a re-
cent result of JILL]. However, this general technique
is very inefficient. The simple construction of [BM] is
inapplicable to fg,Y, since for composite N it is not
one to one. fg,N is also not regular (i.e. not every pos-
sible value has the same number of preimages), hence
even the (inefficient) construction of [GKL] cannot be
used. We are interested in an efficient construction,
using the simultaneous security of O(n) bits of fg,g
to output as many bits as possible in every stage of
the generation.

Using the results JILL] and [IZ] we present a con-
struction of an extender G : {0, 1) I --~ {0, 1} I+°(n)
where I = O(n). The pseudo-random bit generation
is achieved through repeated applications of the ex-
tender to a random seed.

Let N = P • Q be a Blum integer of size n and
let g be an admissible high order generator. Let
n - O(logn) < m < n - 2 be an integer such that
2 m-1 < ordg(g) < 2 m. (As before, hard primes must
be used to find m in practice.) Let Hn,~ be a family
of universal hash functions, where t = m - 4 • log s n.
In [IZ] some simple constructions are demonstrated,
where O(n) bits suffice to define a unique function
h E Hn,t. Let h be a randomly chosen function in

H, , t and let X be a random m-bit string. Let z~/2
denote the n/2 right hand bits of X and let o denote
concatenation. The extender G is:

a(h o X) = h o h (/g,N(X)) o ~:~/2.

N o t e : 1. The fact that O(n) bits of fa,N are simulta-
neously secure and not just O(log n) is crucial for the
construction of G. Applying the hash function causes
a O(log 2 n)-bit loss in the length of G's output . The
final O(n) extension is possible only because of the
many simultaneously secure bits, which more than
compensate for this loss.
2. The values that are made public in G's construc-
tion are g, N and also m. This does not detract from
the perfectness of G since m can be guessed in poly-
nomial time (we used this fact in our shifting and
randomization techniques).
Using the Leftover Hash Lemma of [IZ] combined
with our proof of the simultaneous security of the
bits of fg,N it is easy to show:

T h e o r e m 10:
G is a perfect extender.

6 Discussion

In this paper we have explored some of the unique
properties of exponentiation modulo a Blum integer,
which make it the first number theoretic function all
of whose bits are proven to be individually hard and
half of whose bits are proven to be simultaneously
hard. The results presented in this paper can be ex-
tended in several directions:

1.

.

.

It is interesting to see which mixed groups of bits
from the right and left half of fg,g can be proven
to be simultaneously secure. For example,we can
show that for every 1 < j < n/2 the rightmost j
bits together with the leftmost n / 2 - j bits are si-
multaneously secure, and in particular the right-
most n/4 bits together with the leftmost n/4 bits
are simultaneously secure.

The factorization of Blum integers may remain
intractable even if some of the bits of P and Q
are known. Efficient factorization techniques are
known only when at least n /3 bits of P or Q
are given [RS]. Assume that the factorization
of Blum integers remains computationally hard
even when we are given the n /4 most signifi-
cant bits of P or Q. Under this strengthened
intractabili ty assumption it is easy to show that
three quarters of the bits of fg,Y are simultane-
ously secure, as the length of the unknown part
of S is now only n /4 instead of n/2.

Let F denote the set of all composites N which
are the products of a small number of large
primes. Assume that it is computationally hard
to distinguish Blum integers from the numbers
in F (and thus in particular it is difficult to fac-
tor these numbers). Under this strengthened as-
sumption our results hold not only for Blum inte-
gers but for all F as well, even though our proof
techniques are not directly applicable to numbers
in F. This generalization was first observed by
Silvio Micali (personal communication).

Acknowledgements

We would like to thank Noga Alon for his help in
the proof of Proposition 1. Our paper greatly ben-
efitted from the helpful insight of Uriel Feige, Oded
Goldreich, Raft Heiman and Moshe Tenenholtz.

413

References

[ACGS] Alexi, W., Chor, B., Goldreich, O., Schnorr,
C.P., "RSA/Rabin bits are 1/2+l/poly(log
iV) secure", Proc. 25th FOCS, 1984, pp..~9-
457.

[Ba] Bach, E., "Discrete Logarithms and Factor-
ing", Report No. UCB/CSD 84/186, Univ.
of California, 1984.

[BBS] Blum, L., Blum, M., Shub, M., "A Sim-
ple Secure Pseudo-Random Number Gener-
ator", SIAM J. on Computing, Vol. 15, No.
2, 1986, pp. 364-383.

[Be] Blum, M., Goldwasser, S., "An Efficient
Probabilistic Public Key Encryption Scheme
which Hides All Partial Information", Proc.
CRYPTO 84, pp. 289-302.

IBM] Blum, M., Micali, S., "How to Gener-
ate Cryptographically Strong Sequences of
Pseudo-Random Bits", SIAM J. Computing,
Vol. 13, No. 4, 1984, pp. 850-864.

[Ch] Chor, B., Two Issues in Public Key Cryptog-
raphy: RSA Bit Security and a New Knap-
sack Type System, MIT Press, 1986.

[GKL]

[CL]

Goldreich, O., Krawczyk, H., Luby, M.,
"On the Existence of Pseudorandom Gen-
erators", Proc. 29th FOCS, 1988, pp. 12-24.

Goldreich, O., Levin, L.A., "A Hard-Core
Predicate for all One-Way Functions, Proc.
21st STOC, 1989, pp. 25-32.

[GM] Goldwasser, S., Micali, S., "Probabilistic
Encryption", JCSS, Vol. 28, 1984, pp. 270-
299.

[Ha] Hastad, J., private communication.

[ILL] Impagliazzo, R., Levin, L.A., Luby, M.,
"Pseudo-Random Generation from One-
Way Functions", Proc. 20th STOC, 1988,
pp. 12-24.

[IN] Impagliazzo, R., Naor, M., "Efficient Cryp-
tographic Schemes Provably as Secure as
Subset Sum", Proc. 30th FOCS, 1989, pp.
236-e41.

[IZ] Impagliazzo, R., Zuckerman, D., "How to
Recycle Random Bits", Proc. 30th FOCS,
1989, pp. 248-254.

[KMO]

[LW]

[Na]

ERa]

[as]

[asA]

[ss]

[vv]

[Y]

Kilian, J., Micali, S., Ostrovsky, R., "Min-
imum Resource Zero-Knowledge Proofs",
Proc. 30th FOCS, 1989, pp. 474-479.

Long, D.L., Wigderson, A., "The Discrete
Logarithm Hides O(log n) Bits", SIAM J.
Computing, Vol. 17, No. 2, 1988, pp. 363-
372. Also: "How discreet is the Discrete
Log?" Proc. 15th STOC, 1983, pp. 413-420.

Naor, M., "Bit Commitment Using Pseudo-
Randomness", Proc. Crypto 89.

Rabin, M.O., "Digital Signature and Public
Key Cryptosystems as Intractable as Factor-
ing", Technical Report, MIT LCS TR-212,
1979.

Rivest, R.L., Shamir, A., "Efficient Factor-
ing Based on Partial Information", Proc. Eu-
rocrypt 85, pp. 31-34.

Rivest, R.L., Shamir, A., Adleman, L., "A
Method for Obtaining Digital Signatures
and Public Key Cryptosystems", Comm.
ACM 21:120-126, 1978.

Schrift, A.W., Shamir. A. "On the Univer-
sality of the Next Bit Test", unpublished
manuscript, 1989.

Vazirani, U.V., Vazirani, V.V., "Efficient
and Secure Pseudo-Random Number Gener-
ator", Proc. 25lh FOCS, 1984, pp. 458-463.

Yao, A.C., "Theory and Applications of
Trapdoor Functions", Proc. 23rd FOCS,
1982, pp. 80-91.

Append ix :
B a c k w a r d - E x t r a c t

Procedure

In this appendix we present an alternative extrac-
tion procedure for S, named the Backward-Extract
procedure. In this procedure the bits of S are discov-
ered from the most significant bit to the least signifi-
cant bit. The main property of the procedure, which
makes it essential for the proofs dealing with the ex-
treme left bits and the simultaneous security of the
left half of the bits, is that at any stage of its ap-
plication all the bits left to the oracle's location are
zero. The procedure is applicable only when the or-
acle's location is left to the middle. To simplify our
presentation assume that the oracle's location is ex-
actly in the middle. Following is a description of the

414

Backward-Extract procedure, with o denoting con-
catenation:
T h e B a c k w a r d - E x t r a c t P r o c e d u r e :

1. Find Snl2 by guessing a value
k of 8 n l 2 _ l . . . S n / 2 _ O (l o g n) , zeroing these guessed
bits (with the original Y transformed to Y~) and
querying the oracle on sufficiently many random
multiples Y~ • gR (modN) , for R < e. Denote
this current guess for the most significant bits of
S by CS~ = sn/2 o k.

2. Repeat stage 1 for all possible guesses k =
0, ..., n°(1) of the bits sn/2-1.,..s,~/2-OOog,), thus

creating n°(D candidate values for the most sig-
nificant bits of S: CSlo,..., CSI, oo).

3. Let s , /2- j be the bit that is currently eval-

uated. Let CS~ be the candidate value for
the left j bits of S that we use for the eval-
uation. Guess a value b for Sn/2_j_O(logn).

Let v = k°0°gn) - I o b be the current
guess for 8n/2_j_ l , . . . ,Sn /2_j_O(logn) , where

k °0°gn) denotes the value assigned by k to
s , /2- j -1 , ..., s,~/~-j-OOogn)+l. Shift S j bits to
the left with the left j bits of S zeroed accord-
ing to CS~, placing sn/z_j at the middle. Zero
s,~/2-j-1, ..., s,~/2-j-o(logn) according to v. Let
Yd denote the resulting Y.

4. Deduce Snl2_ j by querying the oracle on suffi-
ciently many random multiples YJ .gR (modN) ,
for R < e.

5. Check whether the resulting value of sn/2-j
equals kO(logn), i.e. the value that has been as-

signed to that bit while creating CS j. If so, up-
date the current guess for the j + 1 left most bits
of S to CSJv +1 -- C S j o b.

6. Repeat stages 3-5 for the other possible guess of
sn/2-j - O(log n).

7. Repeat stages 3-6 for all existing candidate val-
ues for the j left bits of S.

8. Repeat previous stages to extract all bits.

In the above process we initially create n °(1) pos-
sible candidates for the O(log n) most significant bits
of S. As we proceed, a certain candidate CSJv +1.
can be generated either from candidate value CS~
with ko(Iogn) = 1 or from a candidate value with
ko0ogn) = 0 but not from both, since we use the
guess v to determine explicitly the value of s,,/2-j
and thus evaluate the guess k. Therefore, there are

I

still at most n°(U candidate values at every stage of
the process. The correct value of S among the n O(1)

resulting candidates is chosen by trying to factor N
with each computed S.

The following scheme illustrates the position of S
during the procedure. We denote an unknown value
of a bit by a question mark. All bits tha t are known a-
priori to be zero are denoted by a zero. Bits of S that
were discovered or assigned values and subsequently
zeroed are denoted by an exclamation mark. The
n /2- th bit, where the oracle is located, is indicated
by a box.

Before the procedure begins:

1 ... 0 ... "'" ? "'"

After stages 1: .,4 ~ O (l o g n)

It; ?
• lj 0 ...

During the procedure:

Finally:

415

