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Abstract. NTRU is a new public key cryptosystem proposed at Crypto 
96 by Hoffstein, Pipher and Silverman from the Mathematics department 
of Brown University. It attracted considerable attention, and is being 
advertised over the Internet by NTRU Cryptosystems. Its security is 
based on the difficulty of analyzing the result of polynomial arithmetic 
modulo two unrelated moduli, and its correctness is based on clustering 
properties of the sums of random variables. In this paper, we apply new 
lattice basis reduction techniques to cryptanalyze the scheme, to discover 
either the original secret key, or an alternative secret key which is equally 
useful in decoding the ciphertexts. 

1 Introduction 

NTRU [l] was proposed at the rump session of Crypto 96, as a fast public-key 
encryption system. The authors explored several potential attacks against the 
scheme, but concluded that they are extremely unlikely to  succeed. In particular, 
they considered the standard lattice-based attack and showed that the attackers 
could not expect to find the secret key by computing the shortest vector in this 
lattice with the LLL [3] algorithm, since the secret key was surrounded by a 
“cloud” of exponentially many unrelated lattice vectors. 

In this paper we present another lattice-based attack, which should either 
find the original secret key f or an alternative key f‘ which can be used in place 
of f to decrypt ciphertexts with only slightly higher computational complexity. 
We construct a lattice L,  each of whose elements corresponds to  a potential 
decrypting key f‘; the effectiveness off’ for decrypting is directly related to  the 
length of the corresponding lattice element. If we find any vector f’ as short as f ,  
we can decrypt easily. If, instead, we find several vectors f‘(i), each being 2 or 3 
times the length o f f ,  then we can obtain partial decryptions from each potential 
key f’(i) and piece them together to  form a total decryption. 

The paper is organized as follows. Section 2 gives some notation, and intro- 
duces a norm which will be useful to our analysis. In Section 3 we sketch the 
NTRU cryptographic system. In Section 4 we describe the lattice L.  Section 5 
relates the probability of success to  the lengths of the recovered short vectors in 
the lattice. 
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2 Notation 

We denote the integers by Z and the integers modulo q by Z,. N is a positive 
integer. We will identify the vector space Z N  (respectively 2,") with the ring of 
polynomials Z[X]/(XN - 1) (resp. Z , [ X ] / ( X N  - I)), by 

f = (fo, f l , .  . . , f N - d T  = c fixi 

A boldface letter f represents a vector. The convolution of two vectors is given 
by f * g where 

(f*g)k = C f i g j ;  
i + j = k  ( m o d N )  

this is the ordinary polynomial product in Z,[X]/(X" - l), and is both com- 
mutative and associative. The vector of all 1's is denoted by 1. The matrix of all 
1's is J ,  and the identity matrix is I .  The symbol p;' denotes a multiplicative 
inverse of p modulo q. 

2.1 Approximations to a norm 

For x E Z N  define 
f = 1 EN-1 N 2=0 x i  

112 
lXl* = ( g ; l ( Z i  - q 2 )  

So lxlI is the standard deviation of the entries of x, scaled by fl. This norm is 
invariant under the operation of adding t l  to x, that is, adding t to  each entry 
zi. It is the L2 norm of the projection of x orthogonal to the vector 1, hence the 
I symbol. 

In some circumstances we will use the approximation 

Ix * YII = lxll. IYll. 

Ix * Y12, = C k [ ( X  * Y ) k  - -I2 
= Ck(W * 2); 

= ~k ( ~ i  w i z k - - i )  ( ~ j  W j 2 k - j )  

(1) 

Indeed, letting x, = f + w, and yj = j i  + zj we find 

with indices being considered modulo N .  For each product w i 2 k - i w j z k - j  counted 
in the sum, the difference j - i  between the w-indices is the same as the difference 
( I c  - i) - (k - j )  between the z-indices. Letting d = i - j denote this common 
difference, and setting t = k - j ,  we rearrange the sum as: 

Ix * Yl2, = E d  ( X i  WiWl+d)  (EL Z&Q+d) 

= (xi w:) (E, 2;) + &o (xi Wiwi+d)  (El zlzl+d) 

= 1x1; lyl; (ci ' 4 W i i - d )  (EL Z!Zf+d) 
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NOW let us assume that w and z behave like random vectors. For each of the N- 1 
terms corresponding to nonzero d, the autocorrelation coefficient Ci wiwi+d 
should be smaller than the corresponding sum with d = 0, namely ciw3, 
by a factor of about l / f i ,  and similarly with the autocorrelation coefficient 
'&zezt+d, so that the product should be smaller by a factor of 1/N. Further, 
these terms come in with random sign, so that some cancellation should occur. 
So, in the random case, we can assume that the second sum (over nonzero values 
of d )  is much smaller than the first term, corresponding to d = 0. This leads US 

to  the approximation (1): 

IX * y12, = 1 x 1 ~  2 2  /ylL + smaller terms 

(x * yIl = (xIl /yIl +smaller terms 

3 The NTRU system 

We sketch the NTRU system, as developed in [l]. We give sample parameters, 
based on the authors' original recommendations, to aid the reader's intuition, 
but with the caution that these parameters can be modified in future versions 
of the NTRU system. 

Public parameters include three positive integers, ( N , p , q ) ,  with p and q 
relatively prime. For example we might have N = 167, p = 15, q = 1024. Part 
of the public key is a vector h E Z y .  The space of allowable plaintext messages 
m is ~m = (0, I , .  . . , p  - I } ~ .  

There are additionally spaces 

S,,S,,Sg c zp" 
of allowable values of vectors 4, f and g, to be described in the next few para- 
graphs. For example, we might have each of s,#, = Sf = Sg being the collection 
of all (f) N-vectors with d = 71 entries of 1 and N - d = 96 entries of 0. 

The private key contains vectors f E Sf and g E Sg related to  the public 
key h, and integers s, t ,  t l ,  t 2  which need not be kept secret. The values f and g 
satisfy 

The private key also includes a vector fp', calculated from f, satisfying 
p g  = f * h (mod 4). (2) 

f * fp' = ( I ,o ,o , .  . . , o ) ~  

This product corresponds to the polynomial 1. 

4 E S+ and computes the ciphertext 

(mod p ) .  

Encryption: To encrypt the plaintext m, the encryptor randomly selects 

e = c $ * h + m  (modq). 

A different random choice of $I is made for each plaintext m. 
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Decryption: The decryptor computes 

a =  f * e  = (f * h) * + + f  * m  (mod q ) ,  

and adjusts the entries by 

0 if an: < s 
q if an: 2 s. bn: = an: + t - 

Notice that 
(f * h) * 9 = pg * 9 (mod q).  

Parameters are chosen so that both t l l  + pg * 9 and t z l  + f * m are “small 
enough” : the entries of the non-modular expression 

b = t l  + p g  * 4 + f * m 

are guaranteed to lie between -q /2  and 412 most of the time. If in fact all 
entries lie in that range, the decryptor can switch from computation modulo q 
to computation modulo p, and calculate 

b * f;’ (mod p). 

This removes dependence on the unknown 9, and recovers m. 

tion possible. Using the approximation (1) we can say that 
We estimate the bound on the elements of b which still make this computa- 

It11 + Pg * 911 25 P lgll141L 

where 
that all such 4 have the same norm.) Similarly 

is the norm of a typical element of S$. (We can arrange things SO 

It21 + f * ml, = Ifl, lmll. 

Making the second assumption that the two vectors t l l+pg*& and t z l + f * m  
are nearly orthogonal, we would obtain 

lbl; = It1 + p g  * 9 + f * ml:2= It11 + p g  * 41; + It21 + f * rnl; 
= P2 Igl i  191: + lfl? lmll. 1 

which we choose to write as 

Make the third assumption that the entries of b are nonnally distributed, 
with mean near 0 (this governed our choice of t )  and standard deviation c x 
lbll I n .  The decoding procedure will fail if any of the N entries bi exceeds 
q / 2  in absolute value. 

In the table below, we see the effect of letting 4/2 he a reasonable multiple 
(3,4,5 or 6) of the standard deviation c. The second column gives the probability 
that an individual term lbil will exceed q / 2  (and hence he misinterpreted), and 
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the third column gives the probability that at  least one of the N = 167 terms 
(b i (  exceeds q / 2  {and hence the decryption is incorrect). 

Individual Failure among 
failure 167 entries 

3 2.70 x 10-3 3.63 x 10-1 
4 6.33 x 10-5 1.05 x lo-’ 

(4/2>/u P = Prob{lbiI > 4/21 1 - (1 - P I N  

5 5.73 x 10-7 9.57 x 10-5 
6 1.97 x 10-9 3.30 x 10-7 

So if 4/2 = 5 0  [that is, u = 4/10) the procedure will correctly decode most 
messages. We would want to  arrange parameters so that u < 4/10, and a smaller 
value of u would ensure higher reliability. 

Remark: We are essentially using an estimate on the L2 norm of b to pro- 
duce an estimate of its LO3 norm; the L2 bound is relatively easy to estimate, 
but the L” bound is what is required for error-free decoding. 

4 The lattice 

We have seen that reliability of decoding is directly related to the ratio of u M 
lbl, /f i  to 4. In turn, equation (3) gives an estimate of (bll in terms of I f ( ,  
and lglil where p g  = f * h (mod 4). 

Let us consider an alternate N-vector f‘ which the cryptanalyst can use 
in place of the correct value f .  Calculate from equation (2) a value g‘, and 
from equation (3) an estimate of Ib’ll. If this value Ib‘lL is comparable to (bl, 
(smaller or not much larger), then the cryptanalyst will be able to mimic the 
legitimate decoder, using f’ and g’, to decode the message. 

Thus we find the system of equations 

pg’ = f’ * h (mod q )  (4) 

Consider and Im(, to be held constant at  their “typical” values. Setting 

A=--, I4 I 
P 1911 

we are left with 

It is a simple matter to  build a lattice L ,  whose elements correspond to 
choices of f ’  and corresponding g’, and with the squared norm of the elements 
being 

lg’l; + A2 I f ’ ] ; .  
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Start with a 2n x 2n matrix L’: 

L‘= 

Here I is the N x N identity matrix, and H is the circulant matrix whose 
columns are circularly shifted versions of the vector hpil (mod q) ;  recall pi1  
is an integer satisfying p;’p = 1 

A vector in the column span of L‘ will be of the form 
(mod q). 

v’ f , x  -4 - = [;‘’I, 
where g’ satisfies pg’ = f‘ * h (mod a ) ,  and x is an arbitrary integer vector 
representing multiples of q. 

The presence of H in the lower left of L’ insures the relation g‘ = p;lh * f’ 
(mod q),  and the block qI serves to perform the reduction modulo q. 

The vectors Xf‘ and g’ will generally have nonzero mean, but we are interested 
in the orthogonal norms If’/* and lg‘ll. To this end, subtract from each column 
vector v in the top half of L’ the constant vector ( V ) 1  so that the result has zero 
mean; similarly each vector w in the bottom half of L’ is replaced by w - (w)l .  
Our new matrix L is then 

H - a J  q I - ( q / N ) J  O I  ’ 
X I  - ( X / N ) J  L =  [ 

where J is the matrix of all l’s, and Q: is a suitably chosen scalar. 
Remark: L has only 2N - 2 independent vectors, because 

L [;I =.[;I = o  

Now a typical vector is 

and the square of its L2 norm is 

Thus the norm of the lattice element ~ f ‘ , ~  is directly related to  the suitability 
off’ as a decrypting key. 

Remark: We also need f’ to be invertible modulo p ,  so that fi-’ can be 
used in the decrypting process. This seems to  be a weak requirement. 

For a given vector f‘, select x to minimize this norm, and define 



5 Lengths of suitable vectors 

We have seen that the correct key f should have 

nf < 4/10 

in order to insure that messages are decoded correctly at  least 0.9999 of the 
time. 

If the lattice basis reduction finds a vector f’ with, say, nf = q/4, then 
the cryptanalyst can still gain much useful information. The entries bl, of the 
recovered vector b are likely to be contained in the interval 

[-3a, +3a] = [-3q/4,3q/4], 

since there are only 167 entries and the probability of any given entry lying 
outside the 3a interval is about 0.0026. Any entry b i  in the interval [q/4,3q/4] 
(mod q )  is unreliable, because it could represent either bh or b’, - q and still 
lie within the range [-3a, 3a]. But entries bh in the intervals [0, q / 4 )  U (3q/4, q) 
(mod q)  are reliable; one can assume that they represent integers in the range 
(-q/4,q/4) with no aliasing. We expect a fraction 0.68 of all bh to lie in this 
reliable range. Each represents knowledge of a linear relation among the message 
components mi (mod p ) ,  namely 

i 

If we find two such vectors f‘(’) and f’(2), each yielding about 0.68N linear 
relations (modulo p )  among the N entries mi,  then we can solve the resulting 
system of linear equations to recover the message m. 

If the recovered vectors f’ are somewhat longer, say 

npi) M 4 x nf 

then we may have to work with faulty partial information: a few of the estimate 
integers bi might be incorrect, leading to a few incorrect linear equations among 
a collection of mostly correct ones. Then we will have to resort to techniques 
from error-correcting codes to discover the incorrect equations among the correct 
ones. 

So our success depends on the success of lattice basis reduction methods in 
finding relatively short vectors in the lattice. If we find a vector as short as f: 

nf‘ I nf 
then clearly we can use f‘ as a decrypting key. If we find two vectors not much 
longer than f: 

nr(l) = n p )  5 2.5 x nf 
then each will give us partial information, and we can combine this information 
via linear algebra to recover m. If we find several vectors somewhat longer yet, 

npi) M 4 x nf 
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then we still have a chance, if error-correcting techniques can be applied. 

vector whose length satisfies 
The Lovasz lattice basis reduction methods [3] are only guaranteed to  find a 

nfi <2N/2nf 

which is clearly insufficient. Schnorr [4], [5] has improved the original methods 
by using block techniques; he can find shorter vectors, at  a higher computational 
price, than LLL. But it is still not guaranteed to  find vectors as short as 

To summarize: if there are many vectors f' with nfl 5 nf then we are likely 
to stumble across one and be able to decrypt. If f is much shorter than all 
other vectors, then we are likely to find f .  The only hope for the scheme to 
remain secure is for many vectors to satisfy, say, nr  = 10 x nf and hope that 
the lattice basis reduction methods fail to find f among the sea of f'. With 
any improvements in the technology of lattice basis reduction, this temporary 
security would vanish. 

6 Other comments 

The lattice used in our main attack contains linear combinations of the columns 
of the circulant matrix H and appropriate multiples of the identity matrix I .  An 
alternative lattice attack is to  consider the dual lattice which characterizes all 
the integral solutions of the following homogeneous equation H * f = pg t qk, 
where f ,  g and k are three vectors with integral unknowns, and p ,  q are the two 
moduli. This lattice is closely related to that described in Section 4, except for 
the difference between x and IxIL; it is hoped that this alternative description 
might help the reader's intuition. 

of 2n integers which make 

the n entries in k integral. It is easy to show that it forms a lattice since its 
discrete and closed under addition. This lattice has full dimension 2n (except 
in degenerate cases), and we can find the 2n basis vectors in two groups of n. 
In each group we combine the n column vectors into a matrix, and denote the 
resultant n x n matrices F G and K :  

1. Find a basis for the homogeneous case in which K = 0. The resultant 
equation is H * F = pG, which can be solved by F = PI and G = H since 
HpI  = p H .  

2. Find a basis for the inhomogeneous case in which K = I .  The resultant 
equation is H * F = pG + q I .  To solve it, we assume that If is invertible modulo 
p ,  and find two integral matrices B,  C satisfying H * B = I + pC (that is, B 
is the inverse of H modulo p ,  and C is the matrix of multiples of the modulus 
p in the modular reductions.) Then F = qB and G = qC is a solution since 
H * F = qH * B = qI + pqC, and pG + qI = pqC + qI .  

We consider the set of all the column vectors [:I 
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We now combine the two cases into a single 2n x 2n matrix A whose columns 

generate the lattice of vectors. The matrix A is: 

The small column vector we are looking for in this lattice has entries of 
zero and one in the top half, and around two or three in the bottom half. We 
believe that for the recommended parameters of the NTRU cryptosystem, the 
LLL algorithm will be able to find the original secret key f as the first half of 
such an unusually short lattice vector. 

7 Extensions 

We understand that the authors of NTRU, after learning the details of our 
attack, are continuing their research into related schemes [2]. 

One direction of their research involves schemes similar to NTRU but with 
larger parameters. The expense, for the designers of the system, comes with 
larger public keys and more time-consuming encryption. The added security 
comes from the notion that in a lattice of higher dimension (several hundred) it 
will be computationally harder for the opponent to find high-quality vectors. To 
maintain this security, one must keep ahead of advances in lattice basis reduction 
techniques. 

Another direction of their research involves extensions to noncommutative 
groups. Instead of using a group algebra over ZN (that is, the ring Z , [ X ] / ( X N  - 
l)), one would use a group algebra over a noncommutative group. At the time of 
this writing we have not had sufficient time to  analyze these proposed extensions, 
but we hope to be able to comment on the noncommutative version in the final 
version of the paper. 
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