BREAKING ITERATED KNAPSACKS™

Ernest F. Brickell

Sandia National Laboratories
Albuquerque, New Mexico 87185

ABSTRACT

This paper presents an outline of an attack that we have used

successfully to break iterated knapsacks.

Although we do not provide

a proof that the attack almost always works, we do provide some heur-

istic arguments. We also give a detailed description of the examples

we have broken.

INTRODUCTION

R. Merkle and M. Hellman [10] devised the first knapsack based

cryptosystem. In this paper we will deal only with the Merkle-Hellman

knapsack, although similar techniques will work on Graham-Shamir

iterated knapsacks also. We will say that a set of positive integers

@ls+...,an is an ordered Y-times iterated knapsack if there exists a

wj, Mj, aj,4 for 1 < j <Y and 1 < i < n such that

ap,i = si for

aj'i = aj_llin mo MJ for
n

My >) aj-1,i for
i=1

a; = ay,j for

1 <i<n ,

1 <j <Y and 1 <i<n,

1 <j <y ,

1 <i<n .

* This work performed at Sandia National Laboratories supported
by the U. S. Department of Energy under Contract Number

DE-AC04-76DP00789,

G.R. Blakley and D. Chaum (Eds.): Advances in Cryptology - CRYPTO 84, LNCS 196, pp. 342-358, 1985.

© Springer-Verlag Berlin Heidelberg 1985

superincreasing sequence sj,...,sp (i.e., s; > _E_Sj), and integers
J<i

(1.1)

(1.2)

(1.3)

(1.4)

343

We use a = b mod M to mean that a is the least nonnegative resi-
*._
due. Let wj = wj 1 mod Mj for 1 < j < Y. We will define integers

kj,i for 1 < j <Y and 1 <1 < n to be those integers satisfying
aj,iWj - kj,iMj = aj-1,i for 1 <3 <Y and 1 <i <n. (1.5)

We will say that a set of positive integers aj,...,ap is an
unordered Y-times iterated knapsack if there is some permutation of
the aj,...,2n that is an ordered Y-times iterated knapsack.

To cryptanalyze this system, one must solve the knapsack (or
subset sum}) problem for the integers aj,...,ap and any subset sum s.

That is given s, one must find a 0-1 vector(ay,...,a,) such that
n
s =) o3
i=1

if such a 0-1 vector exists.

In fact it is sufficient to be able to solve the knapsack problem
for a 0-1 vector (cl,...,an) which has <« % n ones, because one can
consider the subset sum s and the subset sum iglai - s.

In this paper we will describe an algorithm for breaking Y-times
iterated knapsacks in polynomial time. We have successfully demonstra-
ted this algorithm on examples with n = 100 and ¥ = 5, 10, and 20.

The first attack on knapsack based cryptosystems Qas found by Adi
Shamir [13]. He discovered an algorithm for cryptanalyzing the single
iteration Merkle~Hellman knapsack in polynomial time. Len Adleman [1]
found a method for breaking the single iteration Graham-Shamir knapsack
in polynomial time. His attack used the Lenstra, Lenstra, Lovasz (L3
lattice basis reduction algorithm [9}, which could also be used to
greatly speed up the attack on the Merkle-Hellman knapsack. Len Adleman
[1] and Jeff Lagarias [7] have both developed attacks for the doubly
iterated Merkle-Hellman knapsack. Adleman [1] also proposed an attack
on multiply iterated knapsacks, but Brickell, Lagarias, and Odlyzko {3]

showed that there were some problems with it. However the lattice

344

that we use in our new attack is the same as the first lattice that
Adleman used in his attack.

By using a different approach, E. Brickell {2] and J. Lagarias and
A. Odlyzko [8] have developed algorithms which will cryptanalyze MH or
GS cryptosystems in polynomial time if the information rate is low
enough. The information rate of a knapsack based cryptosystem is
roughly n/log;(max ay,6j). It is not known exactly how low the infor-
mation rate must be for these algorithms to work, but the information
rate must at least be less than .645 before these methods can possibly
be successful. Since each iteration lowers the information rate, these
methods will break a knapsack cryptosystem if it has been iterated too

many times.

THE USE OF LATTICE REDUCTION
The L3 lattice basis reduction algorithm (9] is used in all of the
attacks on knapsack based cryptosystems. A set of points, L, in RP is a

lattice if there exists a set of independent vectors vj,...,yy sSuch that
L= {zyvy + ... + zZpvy ¢+ 29eZ for 1 <i <m} .

Such a set of vectors, vj,...,vy is called a basis for the lattice. The
L3 algorithm finds a reduced (or short) basis for the lattice. We will
not give a precise definition of a reduced basis. .We will only note
that in a reduced basis, all of the basis vectors are relatively short
in the Euclidean norm.

Let aj,...,a, be an unordered Y-times iterated knapsack. Let m be
an integer < n. Later we will put conditions on how small m can be.

Let L be the m-dimensional lattice generated by the following vectors.

bl = (a2,a3,a4,...,am,n'1)
by = (ayj,0 ,0 ,...,0 ,0)
by = (0 ,27,0 ,...,0 ,0)

m (0 '0 IO ,...,al,O)

o
1]

345

The first step in the algorithm is to find a reduced basis for L
by using the L3 algorithm. We now must go into a rather detailed dis-
cussion to describe the vectors we expect to see in the reduced basis.

Let D be the smallest integer such that 2P > max{al,...,an}. Then

n
My, Wy, aj,...,a, should be O(ZD). Since Mj > iflaj-lyi’ we will assume

that My_k, wY"k' ay_k'i are O(ZD_k lOg l'l).
The norm of the vector

— m ‘al
W= ~—ajby + igzaibi = (0,0,...,0,—)

is 0(2D-log n), 1f we take m > TBEQE:T , then w would probably be the
shortest vector in L if the integers aj,...,ap were chosen from the uni-
form distribution on (0,2P). However, because @js+.0ra, are an unordered
Y-times iterated knapsack, there are other vectors in L that are about
the same length as w. For this discussion we will refer to any vector

in L with norm < 0(2D-1og nj as a short vector.

Adleman found that there was a short vector that was a result of

the last iteration. Prom (1.5)
ajWy - ky,iMy = ay-1,i -

Divide by Myaj

fx - kY,l =1 <aY—1,1)
My aj My aj
Subtract equation i from equation 1
kv,i ~ Ky, 21 (aY-l,l - 3y,
aj ay My al aj

Multiply by ajaj

=1 - i
Ky,i21 — ky, 123 = i; lajay_ 1,1 alaY—l,l) . (2.1)

346

- = D-log n
Ky,i31 = Ky,13; = 0277709 ™)

In the vector

m

x= -ky,1by + _szy,‘ibi
1=

each coordinate is 0(2D0-1log nj), g
|x} = 0(2D~log ny |

Lagarias [7] found a description for short vectors in L that are
the result of many iterations. Let t be an integer with 1 <t < Y.

By applying equation (1.5) repeatedly we get
ajWy--We = Ky kMyWy-1---We = Ky-p, jMy-jWy-2... W = -+ = k¢ jMp = ap-1,i -

We divide by ajMyWy_1Wy-7...W¢ to get

W M M
- [ky §F Ryop, g et b Ky R s
My aj ' Tt MyWy-1 'T MyWy-)Wy-2
ke Me]= 3e~1,i .
*h MyWy- Wy p,, W ajMyWy-1Wy-2.. . W¢

Using the theory of simultaneous Diophantine approximation, there

exists many sets of integers (rj,...,ry) such that for 1 <j < ¥

ry = 4}
or (2.2)
M.
I R S
Ty MyWy_3 .. .Wj

Each of these vectors will give rise to a short vector in the lattice.

For if we let

Y
hy =) kj,iry =-roay for 1 <¢i <m , (2.3)
j=1

347

then the vector
m
-hby +) hijbj (2.4)
i=2
will be a short vector in the lattice. We wili call such a vector a
desirable vector.
We would like to have Y desirable vectors in the reduced basis.
Let = be a permutation on the first n integers such that ag(1),...ra8x(n)
is an ordered Y-times iterated knapsack. We can pick any m of the
weights aj,...,ap. If we pick these weights so that we do not pick
ag(n) rax(n-1) r8x(n-2) - then we expect to get Y desirable vectors
in the reduced basis.
The reason that we do not want ag(p)r @g(n-1)r OF dgx(n-2) 18

a, . .
because the Y short vectors exist because _1-1r1 is small for j=1,...,Y

M
]
and all i in the weights that we pick. But
a a
O,x(n) ~ L and 0,1‘(“'2) -l
My 2 My g8

and these ratios are not small enough. In the examples that we tried,
if Qx(n)r Ax(n-1)s OF Agx(-2) Were in the chosen set, then we only
had Y-1 short vectors. But if these three weights were not in the cho-
sen set and ay(pn-3) was, then we still had Y short vectors.

This condition on the way we must choose an m—set will not seri-
ously affect the running time. The probability of picking a good

m-set is

o)
I
&
21
w

- (2%&)3 .

(m)

Thus we expect to make about (_E_) choices to get a good m-set.
n-m

The information that we obtain from these short vectors are the

w Ho

coefficients hy which we can recover from (2.4). We only know hj for

1 <i ¢<m, and these hj satisfy

h h,
I I Y for 1 <i<m .
ay aj n |\ My

(We haven't proven this, but it has been true in all of our examples.)
We can define hy for i > m by
hy)
hy = |—= ay for m<i<n ,
al
where [x] is the closest integer to x. Because the hj, for 1 < i < m,

have the special form of (2.3) and the rj have the special form of (2.2),

<1 (1 for 1 <i<n .
n \ My

To get the full impact of the power of these vectors (hj,...,hp),

let s be a subset sum such that

where (“1""’“n) is a 0-1 vector with « % n ones. If we then define

h
t=[_1_s] . (2.5)
ay
then
h n n h
e = [—l.)‘alai} =[la1——1al]
ay i=1 i=1 aj
but
h
1
-— a; = h; + e
a1 i i i
where
‘Ell < =
So
n n
t =) aihy +) ajei .

1 i=1

349

But
n
- 1
l aj €5 <= .
i=1 2
So
n
t =)} ejhy .
i=1

n
Thus we can f£ind _zlaihi without knowing what the ay are.
1=

THE USE OF DESIRABLE VECTORS

In this section we will show how the short vectors in the reduced
basis can be used to recover a superincreasing sequence of length n-Y-e.
We will comment about ¢ later, but for now, assume that e is a small
integer. In this section we will assume that aj,...,ap is an ordered
Y-times iterated knapsack. Suppose that we have reduced the lattice

and we have Y desirable vectors of the form

wg = ~hy,1by + _Z hy,ibji 1 <2 <Y
such that
. § . 1 <2 <Y
£y 3Kk Yy, 08
2,1 551 2,3%3,1 2,081 1 <i <n
Tye,5 . : < M
and ry ;5 = 0 or —2:] is a good approximation to ———J .,
! Tg,Y MyWy_1.. W5
For 1 < i < n, let
ay e.ay aj
h1,1 e hl,Y hl,i
Hy = H
hy,1 «+. hy,y hy,j
a) «..ay aj
k1,1 [kl,Y kl,i
Ki = : .

350

Let
1 0 0
-r1,0 ¥1,1 «-- Tl,¥
R = H -
-ry'o rY,l P rY’Y
Then

RKj = Hj .

The following theorem gives us a way of computing the determinant

of Kj.

Theorem:
Let aj,...,ap be an unordered Y-times iterated knapsack. Let

1 <j <£Y. Then

aj’l veu aj,j+1 a0,1 co e ao'j+1

kl,l e kl,j+1 ai,l se. 21,941
M} ... My : = .

kj,l e kj,j+l aj, 1 -+- aj,j+1

Proof:

The case j=1 follows immediately from (2.1). We will complete the
proof by induction. Since any permutation of aj,...,a is an unordered
Y-times iterated knapsack, we can apply the inductive hypothesis to any
permutation of aj,...,ap. So we get eguality in the following statement

by expanding about the last row and seeing that the cofactors are all

equal.
ap,1 .. 20,35+1 aj-1,1 e 23-1,3+1
: ki,1 «o0 k1,341
= My ... M. .
aj_l'l cae aj_l'j+1 1 i-1 .
aj,1 sev A4,3+1 kj-1,1 -e- ki1, 341

aj,1 eee aj,3+1

351

ajvl b aj'j+1
k1,1 eee K1,541

= -M] ... Mj-l :
kj-1,1 oo Ki-1,341
3j-1,1 er 33-1,341
aj,1 cos 35,541
k1,1 vee k1,541

= -Ml *a e MJ_l s
kj-l,l voe kj-1,3+41
aj,le—kj,le cee aj’j+1Wj-kj'j+1M'
aj'l aee aj,j+1
kl,l “ee kl,j+1

= M1 ... Mj : .
kj-1,1 <o kj-1,3+1
kj,l see Ky, 441

Once again, let us take aj,...,ap to be an ordered Y-times iterated

knapsack. For 1 < i < n, let

s1 ees Sy S
ai,1 «-. a1,y a1,i

k4
oo
]

ay,l e ay,y aY'i
and

xi = |det(Aj)] . {3.1)

For i < ¥, xj = 0 since the last column in A; is identical to
another column. However in all of the examples we have run, the
sequence xj has been superincreasing for i > Y + g, where e < 2.
Furthermore, since the cryptanalyst can compute det(H;), he can com-
pute the sequence ¢cxj where ¢ = det{R)/M;...My.

Let us give a heuristic argument for why we might expect xj to be

superincreasing for i > Y + ¢. Expand Aj about the first row to get

= i i Al
det(Ai) slAl,]. + eea + SYAl,Y + slAl,Y"’l (3 -2)

352

where Ai,j is the 1,j cofactor of A;. Let Bi i be the submatrix

of A; formed by deleting the first row and jth column of Ai. So

L= i
‘Al’J‘ \det 31'31 .

Each entry in the 2 row of Bi,j is less than M,. We expect that the
distribution of the values of the A}’j to be independent of i and j
since the distribution of the entries in B%'j is independent of i and j.
But the sequence sj; is superincreasing, so there should be an e such
that for i > ¥ + ¢, the expression for det{(Aj) in (3.2) is dominated by

the last term.

RECOVERING THE ORDER
In the previous section, we showed that if a cryptanalyst had an
ordered Y-times iterated knapsack, then he could recover a superincreas-
ing sequence. However, a cryptanalyst will usually be faced with an
unordered Y-times iterated knapsack. So in this section we will show
how we can apply techniques similar to those of the last section to
find the order in an unordered Y-times iterated knapsack.
Let aj,...,ap be an unordered Y-times iterated knapsack. Let x be
a permutation such that ax(l)r--+r@g(n) is an ordered Y-times itera-
ted knapsack, i.e., ag(p) corresponds to sp, the largest element in
the superincreasing sequence. We will present a method for finding =(1i)
for i > ¥ + €, for ¢ as described in the previous section.
Suppose we have already found =(n),... x{n-j) for some j,
-1 < j <« n-¥Y=-e2. (If j = -1, we haven't found anything yet.) Let
Iy = {L,....n}/{x(n),...,n(n-3)}. We will pick many (¥+1l)-subsets of
Ij. For each subset jg,...,.jy & I that we pick, we will form a
determinant.
ajo ce an Sjo .o sjY
hlrjo e hlle 21,30 ++* 21, jy
Xigreeerdy = : =c : < (4.1)
hY,jo “ee hY,jY aYrjO .o aYer

353

The reason we use these determinants is essentially the same
as the reason we gave in the last section for expecting the xj to be
superincreasing. When we expand the right hand matrix in (4.1) about
the first row, we expect the distribution on the values of the cofac-
tors to be independent of the choice of jg,...,jy. So the value of
Ixjo""'jyl should be dominated by the largest Sji in the first row.
After picking many (Y+l)-subsets of I, we will keep the subset

jore+--+Jy that gives the smallest determinant on We expect

P P
Y
that the set jg,...,jy does not contain any of x(n-j-1),..., n{n-3j-2)
for some value of % which will depend on n, j, and Y. Thus we form
the sequence

aj; cee ajy a;j

hloj]_ PN hler hy, i

zj = :

thj]_ cer hY:jY hY,i

for 1 < 1 < n. For some small X, the sequence zZy(p-j~grA)re--+sZx(n)
should be superincreasing, and the other values of z; should be less than
Zp(n-j-g+2)+ SO we should be able to identify x(n-j- N, ..., n{n-j-1)
and also check to see if our choice of ={n-j},...,n(n) was correct.
We will set j « j+2-\ and continue with this iterative process. We
continue until j does not change.

This method for recovering the order worked much better in practice
than we expected. 1In our examples, we always were able to iterate
until j was less than Y+5. In other words we were able to find an

e-superincreasing sequence with e ¢ 5.

SOLVING FOR THE g

All of the previous analysis has used only the weights aj,...,ap-

In this section we show how to finish the cryptanalysis. That is, given

s find a 0-1 vector ay that has less than % n ones such that

n
) aja; = s
i=1

354

if such a vector exists. We will assume that we have integers hj j

for 1 < j <Y and 1 < i < n such that the sequence

ayl eve Ay A5

h1,1 -.e b1,y h1,3

.
.

hy,1 -.. hy,y hy,j

is superincreasing for i > Y + € and we can find tj (from (2.5)) such

that

n
t3 = 1 owihy,g

i=1
We will find the «j in three steps.
Step 1: i > Y + ¢
Let
aj ves Ay S
h1,1 «++ hyj ¥y &1
t = :

hY,l e hy'y ty,

then

n
t =) aiXj -
i=1
Since xj is superincreasing for i > T + ¢ , we can easily find gaj

for i > ¥ + ¢ .

Step 2: Y < i <Y + ¢
To find aj, we must solve a knapsack problem with about ¢ weights.
We know ¢ for i > Y + ¢, and xj = 0 for i < ¥, so we can find
n n Y+e

t' =) aixj -) @iXi =) aiXj
i=1 i=y¥e+l i=Y+1

355

So we hope that e is small. We conjecture that ¢ is bounded by

O(log n). In our examples, we always had ¢ < 5.

Step 3: i <Y

Since we now know aj for i > Y, let

n
s' =5 - L ajai
i=y+1
']
t: = t. - a;hs 1 <j <Y .
J J i=y+1 - Ot
Let
L]]
s = (S',tl,--.,tY)
and

al s Ay ay+l
hy,1 «.c D1,y by, y4

hy,1 +.. hy,y hy v+1

The problem we are left with is to find a 0-1 vector

a= (ay,...,ays+1), if one exists, such that
Za = s .

If det{(Z) # 0, then this problem is easily solved. 1In all of our
examples, we have found that det(2) ¥ 0. We can speed up this opera-
tion by computing 2z~1 mod p where p is the smallest prime such that
det(Z) # 0 mod p. Then we are computing using integers less than p

instead of integers of size 0(2D).

RUNNING TIME
The worst case running time of the L3 algorithm is o(mbp3). How-

ever in practice, the running time appears to be o(mp3). Alsoc we

356

might have to make O(E§E)3 choices of an m-set of weights before
we get a good one. To find the order of the weights we must take
0{(n) determinants. Each determinant takes O(Y¥3) multiplications of
integers of length D. So the running time fof finding the order is
0o(nY2p2). So the total running time on the first part of the algor-
ithm is

0 m(_n_>3 D3 + 0(n¥3p2)

n-m

The second part of the algorithm is solving for the qj's after a cypher

is received. The running time for this part is

0(n2) + o(2¢/2) + o(¥2) .

TESTS OF THE ALGORITHM

Table 1 summarizes the examples we have run to test the algorithm.
Type - refers to Merkle-Hellman or Graham-Shamir.

N - the number of weights.

R - the number of random bits used in constructing the superin-
creasing sequence. For MH knapsacks, all random bits are the
low order bits. For GS knapsacks, half of the random bits
are the low order bits, and the other half are the high
order bits.

Y - the number of iterations.

D - the number of bits in the final (or public) weights.

m - the number of weights used in the lattice reduction,

Time - the running time in seconds of the L3 algorithm on a Cray 1.

Con - Time/{(mD3)

357

Table 1.
Examples
Type N Y R D m Time Con
GS 40 4 14 82 18 27 .6 2.78E-6
MH 40 5 10 93 28 108.2 4 .80E-6
MH 40 5 20 113 30 210.6 4 .86E-6
MH 40 7 10 105 30 138.1 3.98E-6
MH 40 10 10 123 32 250.1 4 ,20E-6
MH 50 5 7 97 28 108.7 4 .25E-6
Gs 50 5 16 96 24 92.3 4 .34E-6
MH 50 10 7 127 32 263.2 4 .02E-6
Gs 64 5 64 158 37 653.7 4 .48E-6
Gs 64 10 16 140 32 451.8 5.15E-6
GS 100 5 16 151 30 295.5 2.86E-6
Gs 100 10 100 270 53 3542.0 3.40E-6
GS 100 20 20 260 52 3355.3 3.67E-6
CONCLUSION

By extrapolating from the data in Table 1, we project that an
iterated knapsack with N = 1000, Y = 40, and R = 100 could be broken
in 750 hours on the Cray. Since a knapsack of this size would require
a 1.5 Mbit key, it is doubtful that a larger knapsack would ever be
seriously considered.

This algorithm will also break Shamir's ultimate knapsack [14],
It appears that the algorithm can be modified to break the knapsack
that Brickell presented at Crypto'83 and also the lexicographic knap-

sack scheme of Petit [12].

REFERENCES

1. L. Adleman, "On Breaking the Iterated Merkle-Hellman Public Key
Cryptosystem,” Advances in Cryptology, Proceedings of Crypto 82,
Plenum Press 1983, 303-308.

2. E. F. Brickell, "Solving Low-Density Knapsacks," to appear in
Advances in Cryptology, Proceedings of Crypto 83, Plenun Press.

3. E. F. Brickell, J. C. Lagarias and A. M. 0dlyzko, Evaluation of
Adleman's Attack on Multiply Iterated Knapsacks (Abstract), to
appear in Advances in Cryptology, Proceedings of Crypto 83, Plenum
Press.

4. E. F. Brickell and G. J. Simmons, "A Status Report on Knapsack Based
Public Key Cryptosystems,” Congressus Numerantium 37 (1983), 3-72.

10.

11.

12.

13.

14.

358

Y. Desmedt, J. Vandewalle, R. Govaerts, "A Critical Analysis of the
Security of Knapsack Public Key Algorithms, preprint..

J. C. Lagarias, "Simultaneous Dicphantine Approximation of Raticnals
by Rationals, preprint. ’

J. C. Lagarias, "Knapsack Public Key Cryptosystems and Diophantine
Approximation,™ to appear in Advances in Cryptology, Proceedings of
Cryptoc 83, Plenum Press.

J. C. Lagarias and A. M. Odlyzko, "Solving Low-Density Subset Sum
Problems, Proc. 24th Annual IEEE Symposium on Foundations of Com-
puter Science (1983), 1-10.

A. K. Lenstra, H. W. Lenstra, Jr. and L. Lovasz, "Factoring Polyno-
mials with Rational Coefficients," Math. Annalen, 261 (1982},
515-534.

R. Merkle and M. Hellman, *Hiding Information and Signatures in
Trapdoor Knapsacks," IEEE Trans. Information Theory IT-24 (13878),
525-530.

A. M. Odlyzko, "Cryptanalytic Attacks on the Multiplicative Knap-—-
sack Cryptosystem and on Shamir's Fast Signature Scheme," preprint.

M. Petit, "Etude mathematique de certains systemes de cipherement:
les sacs a dos," doctor's these, Universite de Rennes, France.

A. Shamir, "A Polynomial Time Algorithm for Breaking the Basic
Merkle-Hellman Cryptosystem," Proc. 23rd Annual Symposium on
Foundations of Computer Science (1982), 145-152,

A. Shamir, “The strongest knapsack-based cryptosystem,” presented
at Crypto 82.

