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Abstract. We show that if the private exponent d used in the RSA
public-key cryptosystem is less than N0.292 then the system is insecure.
This is the first improvement over an old result of Wiener showing that
when d < N0.25 the RSA system is insecure. We hope our approach can
be used to eventually improve the bound to d < N0.5.

1 Introduction

To provide fast RSA signature generation one is tempted to use a small private
exponent d. Unfortunately, Wiener [10] showed over ten years ago that if one
uses d < N0.25 then the RSA system can be broken. Since then there have been
no improvements to this bound. Verheul and Tilborg [9] showed that as long
as d < N0.5 it is possible to expose d in less time than an exhaustive search;
however, their algorithm requires exponential time as soon as d > N0.25.

In this paper we give the first substantial improvement to Wiener’s result.
We show that as long as d < N0.292 one can efficiently break the system. We
hope our approach will eventually lead to what we believe is the correct bound,
namely d < N0.5. Our results are based on the seminal work of Coppersmith [2].

Wiener describes a number of clever techniques for avoiding his attack while
still providing fast RSA signature generation. One such suggestion is to use a
large value of e. Indeed, Wiener’s attack provides no information as soon as e >
N1.5. In contrast, our approach is effective as long as e < N1.875. Consequently,
larger values of e must be used to defeat the attack. We discuss this variant in
Section 5.

2 Overview of Our Approach

Recall that an RSA public key is a pair 〈N, e〉 where N = pq is the product of two
n-bit primes. For simplicity, we assume gcd(p− 1, q− 1) = 2. The corresponding
private key is a pair 〈N, d〉 where e ·d ≡ 1 mod φ(N)

2 where φ(N) = N −p−q+1.
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Note that both e and d are less than φ(N). It follows that there exists an integer
k such that

ed + k

(
N + 1

2
− p + q

2

)
= 1. (1)

Writing s = − p+q
2 and A = N+1

2 , we know:

k(A + s) ≡ 1 (mod e).

Throughout the paper we write e = Nα for some α. Typically, e is of the
same order of magnitude as N (e.g. e > N/10) and therefore α is very close
to 1. As we shall see, when α is much smaller than 1 our results become even
stronger.

Suppose the private exponent d satisfies d < N δ. Wiener’s results show that
when δ < 0.25 the value of d can be efficiently found given e and N . Our goal
is to show that the same holds for larger values of δ. By equation (1) we know
that

|k| <
2de

φ(N)
≤ 3de/N < 3e1+ δ−1

α .

Similarly, we know that

|s| < 2N0.5 = 2e1/2α.

To summarize, taking α ≈ 1 (which is the common case) and ignoring con-
stants, we end up with the following problem: find integers k and s satisfying

k(A + s) ≡ 1 (mod e) where |s| < e0.5 and |k| < eδ. (2)

The problem can be viewed as follows: given an integer A, find an element “close”
to A whose inverse modulo e is “small”. We refer to this is the small inverse
problem. Clearly, if for a given value of δ < 0.5 one can efficiently list all the
solutions to the small inverse problem, then RSA with private exponent smaller
than N δ is insecure (simply observe that given s modulo e one can factor N
immediately, since e > s). Currently we can solve the small inverse problem
whenever δ < 1 − 1

2

√
2 ≈ 0.292.

Remark 1. A simple heuristic argument shows that for any ε > 0, if k is bounded
by e0.5−ε (i.e. δ < 0.5) then the small inverse problem (equation (2)) is very
likely to have a unique solution. The unique solution enables one to break RSA.
Therefore, the problem encodes enough information to prove that RSA with
d < N0.5 is insecure. For d > N0.5 we have that k > N0.5 and the problem will
no longer have a unique solution. Therefore, we believe this approach can be
used to show that d < N0.5 is insecure, but gives no results for d > N0.5.

The next section gives a brief introduction to lattices overZn. Our solution to
the small inverse problem when α is close to 1 is given in Section 4. In Section 5
we give a solution for arbitrary α. Section 6 describes experimental results with
the algorithm.
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3 Preliminaries

Let u1, . . . , uw ∈ Z
n be linearly independent vectors with w ≤ n. A lattice L

spanned by 〈u1, . . . , uw〉 is the set of all integer linear combinations of u1, . . . , uw.
We say that the lattice is full rank if w = n. We state a few basic results about
lattices and refer to [7] for an introduction.

Let L be a lattice spanned by 〈u1, . . . , uw〉. We denote by u∗
1, . . . , u∗

w the vec-
tors obtained by applying the Gram-Schmidt process to the vectors u1, . . . , uw.
We define the determinant of the lattice L as

det(L) :=
w∏

i=1

‖u∗
i ‖.

If L is a full rank lattice then the determinant of L is equal to the determinant
of the w × w matrix whose rows are the basis vectors u1, . . . , uw.

Fact 1 (LLL). Let L be a lattice spanned by 〈u1, . . . , uw〉. Then the LLL algo-
rithm, given 〈u1, . . . , uw〉, will produce a new basis 〈b1, . . . , bw〉 of L satisfying:

1. ‖b∗i ‖2 ≤ 2‖b∗i+1‖2 for all 1 ≤ i < w.
2. For all i, if bi = b∗i +

∑i−1
j=1 µjb

∗
j then |µj | ≤ 1

2 for all j.

We note that an LLL-reduced basis satisfies some stronger properties, but
those are not relevant to our discussion.

Fact 2. Let L be a lattice and b1, . . . bw be an LLL-reduced basis of L. Then

‖b1‖ ≤ 2w/2 det(L)1/w.

Proof. Since b1 = b∗1 the bound immediately follows from:

det(L) =
∏

i

‖b∗i ‖ ≥ ‖b1‖w2−w2/2.

�

In the spirit of a recent result due to Jutla [5] we provide a bound on the
norm of other vectors in an LLL reduced basis. For a basis 〈u1, . . . , uw〉 of a
lattice L, define

u∗
min := mini‖u∗

i ‖.

Fact 3. Let L be a lattice spanned by 〈u1, . . . , uw〉 and let 〈b1, . . . bw〉 be the
result of applying LLL to the given basis. Suppose u∗

min
≥ 1. Then

‖b2‖ ≤ 2
w
2 det(L)

1
w−1
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Proof. It is well known that u∗
min is a lower bound on the length of the shortest

vector in L. Consequently, ‖b1‖ ≥ u∗
min. We obtain

det(L) =
∏

i

‖b∗i ‖ ≥ ‖b∗1‖ · ‖b∗2‖w−12−(w−1)2/2 ≥ u∗
min · ‖b∗2‖w−12−(w−1)2/2.

Hence,

‖b∗2‖ ≤ 2
w−1

2

[
det(L)
u∗

min

] 1
w−1

≤ 2
w−1

2 det(L)
1

w−1 ,

which leads to

‖b2‖2 ≤ ‖b∗2‖2 +
1
4
‖b1‖2 ≤ 2w−1 det(L)

2
w−1 + 2w−2 det(L)

2
w ≤ 2w det(L)

2
w−1 .

Note that det(L) ≥ 1 since u∗
min ≥ 1. The bound now follows. �

Similar bounds can be derived for other bi’s. For our purposes the bound on
b2 is sufficient.

4 Solving the Small Inverse Problem

In this section we focus on the case when e is of the same order of magnitude
as N , i.e. if e = Nα then α is close to 1. To simplify the exposition, in this
section we simply take α = 1. In the next section we give the general solution
for arbitrary α. When α = 1 the small inverse problem is the following: given a
polynomial f(x, y) = x(A + y) − 1, find (x0, y0) satisfying

f(x0, y0) ≡ 0 (mod e) where |x0| < eδ and |y0| < e0.5.

We show that the problem can be solved whenever δ < 1 − 1
2

√
2 ≈ 0.292. We

begin by giving an algorithm that works when δ < 7
6 − 1

3

√
7 ≈ 0.285. Our

solution is based on a powerful technique due to Coppersmith [2], as presented
by Howgrave-Graham [4]. We note that for this particular polynomial our results
beat the generic bound given by Coppersmith. For simplicity, let X = eδ and
Y = e0.5.

Given a polynomial h(x, y) =
∑

i,j ai,jx
iyj , we define ‖h(x, y)‖2 :=

∑
i,j |a2

i,j |.
The main tool we use is stated in the following fact.

Fact 4 (HG98). Let h(x, y) ∈ Z[x, y] be a polynomial which is a sum of at most
w monomials. Suppose that

a. h(x0, y0) = 0 mod em for some positive integer m where |x0| < X and |y0| <
Y , and

b. ‖h(xX, yY )‖ < em/
√

w.

Then h(x0, y0) = 0 holds over the integers.
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Proof. Observe that

|h(x0, y0)| =
∣∣∣∑ ai,jx

i
0y

j
0

∣∣∣ =
∣∣∣∣
∑

ai,jX
iY j

(x0

X

)i (y0

Y

)j
∣∣∣∣ ≤

∑∣∣∣∣ai,jX
iY j

(x0

X

)i (y0

Y

)j
∣∣∣∣ ≤

∑ ∣∣ai,jX
iY j

∣∣ ≤
√

w‖h(xX, yY )‖ < em,

but since h(x0, y0) ≡ 0 modulo em we have that h(x0, y0) = 0. �

Fact 4 suggests that we should be looking for a polynomial with small norm
that has (x0, y0) as a root modulo em. To do so, given a positive integer m we
define the polynomials

gi,k(x, y) := xifk(x, y)em−k and hj,k(x, y) := yjfk(x, y)em−k.

We refer to the gi,k polynomials as x-shifts and the hj,k polynomials as y-shifts.
Observe that (x0, y0) is a root of all these polynomials modulo em for k =
0, . . . , m. We are interested in finding a low-norm integer linear combination
of the polynomials gi,k(xX, yY ) and hj,k(xX, yY ). To do so we form a lattice
spanned by the corresponding coefficient vectors. Our goal is to build a lattice
that has sufficiently small vectors and then use LLL to find them. By Fact 2 we
must show that the lattice spanned by the polynomials has a sufficiently small
determinant.

Given an integer m, we build a lattice spanned by the coefficient vectors
of the polynomials for k = 0, . . . , m. For each k we use gi,k(xX, yY ) for i =
0, . . . , m − k and use hj,k(xX, yY ) for j = 0, . . . , t for some parameter t that
will be determined later. For example, when m = 3 and t = 1 the lattice is
spanned by the rows of the matrix in Figure 1. Since the lattice is spanned
by a lower triangular matrix, its determinant is only affected by entries on the
diagonal, which we give explicitly. Each “block” of rows corresponds to a certain
power of x. The last block is the result of the y-shifts. In the example in Figure 1,
t = 1, so only linear shifts of y are given. As we shall see, the y-shifts are the
main reason for our improved results.

We now turn to calculating the determinant of the above lattice. A routine
calculation shows that the determinant of the submatrix corresponding to all x
shifts (i.e. ignoring the y-shifts by taking t = 0) is

detx = em(m+1)(m+2)/3 · Xm(m+1)(m+2)/3 · Y m(m+1)(m+2)/6.

For example, when m = 3 the determinant of the submatrix excluding the
bottom block is e20X20Y 10. Plugging in X = eδ and Y = e0.5 we obtain

detx = em(m+1)(m+2)(5+4δ)/12 = e
5+4δ
12 m3+o(m3).

It is interesting to note that the dimension of the submatrix is w = (m+1)(m+
2)/2, and so the wth root of the determinant is Dx = em(5+4δ)/6. For us to be
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1 x xy x2 x2y x2y2 x3 x3y x3y2 x3y3 y xy2 x2y3 x3y4

e3 e3

xe3 e3
X

fe2 – – e2
XY

x2e3 e3
X

2

xfe2 – – e2
X

2
Y

f2e – – – – – eX
2

Y
2

x3e3 e3
X

3

x2fe2 – – e2
X

3
Y

xf2e – – – – – eX
3

Y
2

f3 – – – – – – – – – X
3

Y
3

ye3 e3
Y

yfe2 – – e2
XY

2

yf2e – – – – – eX
2

Y
3

yf3 – – – – – – – – X
3

Y
4

Fig. 1. The matrix spanned by gi,k and hj,k for k = 0..3, i = 0..3 − k, and
j = 0, 1. The ‘–’ symbols denote non-zero entries whose value we do not care
about.

able to use Fact 4, we must have Dx < em, implying (5 + 4δ) < 6. We obtain
δ < 0.25. This is exactly Wiener’s result. Consequently, the lattice formed by
taking all x-shifts cannot be used to improve on Wiener’s result.

To improve on Wiener’s result we include the y-shifts into the calculation.
For a given value of m and t, the product of the elements on the diagonal of the
submatrix corresponding to the y-shifts is:

dety = etm(m+1)/2 · Xtm(m+1)/2 · Y t(m+1)(m+t+1)/2.

Plugging in the values of X and Y , we obtain:

dety = etm(m+1)(1+δ)/2+t(m+1)(m+t+1)/4 = e
3+2δ

4 tm2+ mt2
4 +o(tm2).

The determinant of the entire matrix is det(L) = detx · dety and its dimension
is w = (m + 1)(m + 2)/2 + t(m + 1).

We intend to apply Fact 4 to the shortest vectors in the LLL-reduced basis of
L. To do so, we must ensure that the norm of b1 is less than em/

√
w. Combining

this with Fact 2, we must solve for the largest value of δ satisfying

det(L) < emw/γ,

where γ = (w2w)w/2. Since the dimension w is only a function of δ (but not
of the public exponent e), γ is a fixed constant, negligible compared to emw.
Manipulating the expressions for the determinant and the dimension to solve for
δ requires tedious arithmetic. We provide the exact solution in the full version of
this paper. Here, we carry out the computation ignoring low order terms. That
is, we write

w =
m2

2
+ tm + o(m2),

det(L) = e
5+4δ
12 m3+ 3+2δ

4 tm2+ mt2
4 +o(m3).
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To satisfy det(L) < emw we must have

5 + 4δ

12
m3 +

3 + 2δ

4
tm2 +

mt2

4
<

1
2
m3 + tm2.

This leads to

m2(−1 + 4δ) − 3tm(1 − 2δ) + 3t2 < 0

For every m the left hand side is minimized at t = m(1−2δ)
2 . Plugging this value

in leads to:

m2

[
−1 + 4δ − 3

2
(1 − 2δ)2 +

3
4
(1 − 2δ)2

]
< 0,

implying −7 + 28δ − 12δ2 < 0. Hence,

δ <
7
6
− 1

3

√
7 ≈ 0.285.

Hence, for large enough m, whenever d < N0.285−ε for any fixed ε > 0 we can
find a bivariate polynomial g1 ∈ Z[x, y] such that g1(x0, y0) = 0 over the integers.
Unfortunately, this is not enough. To obtain another relation, we use Fact 3 to
bound the norm of b2. Observe that since the original basis for L is a triangular
matrix, u∗

min is simply the smallest element on the diagonal. This turns out to
be the element in the last row of the x-shifts, namely, u∗

min = XmY m, which is
certainly greater than 1. Hence, Fact 3 applies. Combining Fact 4 and Fact 3 we
see that b2 will yield an additional polynomial g2 satisfying g2(x0, y0) = 0 if

det(L) < em(w−1)/γ′

where γ′ = (w2w)
w−1

2 . For large enough m, this inequality is guaranteed to hold,
since the modifications only effect low order terms. Hence, we obtain another
polynomial g2 ∈ Z[x, y] linearly independent of g1 such that g2(x0, y0) = 0 over
the integers. We can now attempt to solve for x0 and y0 by computing the
resultant h(x) = Resy(g1, g2). Then x0 must be a root of h(x). By trying all
roots x0 of h(x) we find y0 using g1(x0, y).

Although the polynomials g1, g2 are linearly independent, they may not be
algebraically independent; they might have a common factor. Indeed, we can-
not guarantee that the resultant h(x) is not identically zero. Consequently, we
cannot claim our result as a theorem. At the moment it is a heuristic. Our ex-
periments show it is a very good heuristic, as discussed in Section 6. The reason
the algorithm works so well is that in our lattice, short vectors produced by LLL
appear to behave as independent vectors.
Remark 2. The reader may be wondering why we construct the lattice L using
x-shifts and y-shifts of f , but do not explicitly use mixed shifts of the form
xiyjfk. The reason is that all mixed shifts of f over the monomials used in L
are already included in the lattice. That is, any polynomial xiyjfkem−k can be
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expressed as an integer linear combination of x-shifts and y-shifts. To see this,
observe that for any i, j, we have

xiyj =
i∑

u=0

u∑
v=0

bu,vx
u−vfv +

j−i∑
u=1

i∑
v=0

cu,vyufv

for some integer constants bu,v and cu,v. Note that when j ≤ i the second
summation is vacuous and hence zero. It now follows that

xiyjfkem−k =
i∑

u=0

u∑
v=0

bu,ve
vxu−vfv+kem−v−k +

j−i∑
u=1

i∑
v=0

cu,ve
vyufv+kem−v−k

=
i∑

u=0

u∑
v=0

bu,ve
v · gu−v,v+k +

j−i∑
u=1

i∑
v=0

cu,vev · hu,v+k

Consequently, xiyjfkem−k is already included in the lattice.

4.1 Improved Determinant Bounds

The results of the last section show that the small inverse problem can be solved
when δ < 0.285. The bound is derived from the determinant of the lattice L. It
turns out that the lattice L contains a sublattice with a smaller determinant.
Working in this sublattice leads to improved results. The idea is to remove
some of the rows that enlarge the determinant. We throw away the y-shifts
corresponding to low powers of f . Namely, for all r and i ≥ (1 − 2δ)r, the
polynomials yif r are not included in the lattice. Since these “damaging” y-
shifts are taken out, more y-shifts can be included. More precisely, the largest
y-shift can now be taken to be t = m(1− 2δ) as opposed to t = m(1−2δ)

2 used in
the previous section.

The lattice constructed using these ideas is no longer full rank. In particular,
the basis vectors no longer form a triangular matrix. As a result, the determinant
must be bounded by other means. Nevertheless, an improvement on the bound
on the determinant can be established, leading to the result that the small inverse
problem can be solved for δ < 1 − 1

2

√
2 ≈ 0.292. We provide the details in the

full version of this paper.

5 Cryptanalysis of Arbitrary e

In his paper, Wiener suggests using large values of e when the exponent d is
small. This can be done by adding multiples of φ(N) to e before making it
known as the public key. When e > N1.5, Wiener’s attack will fail even when d
is small. We show that our attack applies even when larger values of e are used.

As described in Section 2, we solve the small inverse problem:

k(A + s) ≡ 1 (mod e) where |k| < 2e1+ δ−1
α and |s| < 2e1/2α,
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for arbitrary values of α. We build the exact same lattice used in Section 4.
Working through the calculations one sees that the determinant of the lattice in
question is

detx(L) = e
m3
3α (2α+δ− 3

4 )+o(m3),

dety(L) = e
tm2
2α (2α+δ− 1

2 )+ mt2
2

1
2α +o(tm2).

The dimension is as before. Therefore, to apply Fact 4 we must have

m3

3α
(2α + δ − 3

4
) +

tm2

2α
(2α + δ − 1

2
) +

mt2

2
1
2α

<
m3

2
+ tm2,

which leads to

m2(2α + 4δ − 3) − 3tm(1 − 2δ) + 3t2 < 0.

As before, the left hand side is minimized at tmin = 1
2m(1 − 2δ), which leads to

m2[2α + 7δ − 15
4

− 3δ2] < 0,

and hence

δ <
7
6
− 1

3
(1 + 6α)1/2.

Indeed, for α = 1, we obtain the results of Section 4. The expression shows that
when α < 1 our attack becomes even stronger. For instance, if e ≈ N2/3 then
RSA is insecure whenever d < N δ for δ < 7

6 −
√

5
3 ≈ 0.422. Note that if e ≈ N2/3

then d must satisfy d > N1/3.
When α = 15

8 the bound implies that δ = 0. Consequently, the attack be-
comes totally ineffective whenever e > N1.875. This is an improvement over
Wiener’s bound, which become ineffective as soon as e > N1.5.

6 Experiments

We ran some experiments to test our results when d > N0.25. Our experiments
were carried out using the LLL implementation available in Victor Shoup’s NTL
library. In all our experiments LLL produced two independent relations g1(x, y)
and g2(x, y). In every case, the resultant h(y) := Res(g1(x, y), g2(x, y), x) with
respect to x was a polynomial of the form h(y) = (y + p + q)h1(y), with h1(y)
irredicible over Z (similarly for x). Hence, the unique solution (x0, y0) was cor-
rectly determined in every trial executed. Below we show the parameters of some
attacks executed.

n δ m t lattice dimension running time
1000 bits 0.265 5 3 39 45 minutes
3000 bits 0.265 5 3 39 5 hours

10000 bits 0.255 3 1 14 2 hours
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These tests were performed under Solaris running on a 400MHz Intel Pentium
processor. In each of these tests, d was chosen uniformly at random in the range[

3
4N δ, N δ

]
(thus guaranteeing the condition d > N0.25). The last row of the

table is especially interesting as it is an example in which our attack breaks
RSA with a d that is 50 bits longer than Wiener’s bound.

7 Conclusions and Open Problems

Our results show that Wiener’s bound on low private exponent RSA is not tight.
In particular, we were able to improve the bound from d < N0.25 to d < N0.285.
Using an improved analysis of the determinant, we can show d < N0.292. Our
results also improve Wiener’s attack when large values of e are used. We showed
that our attack becomes ineffective only once e > N1.875. In contrast, Wiener’s
attack became ineffective as soon as e > N1.5.

Unfortunately, we cannot state our attack as a theorem since we cannot prove
that it always succeeds. However, experiments that we carried out demonstrate
its effectiveness. We were not able to find a single example where the attack
fails. This is similar to the situation with many factoring algorithms, where one
cannot prove that they work; instead one gives strong heuristic arguments that
explain their running time. In our case, the heuristic “assumption” we make is
that the two shortest vectors in an LLL reduced basis give rise to algebraically
independent polynomials. Our experiments confirm this assumption. We note
that a similar assumption is used in the work of Bleichenbacher [1] and Jutla [5].

Our work raises two natural open problems. The first is to make our attack
rigorous. More importantly, our work is an application of Coppersmith’s tech-
niques to bivariate modular polynomials. It is becoming increasingly important
to rigorously prove that these techniques can be applied to bivariate polynomials.

The second open problem is to improve our bounds. A bound of d < N
1− 1√

2

cannot be the final answer. It is too unnatural. We believe the correct bound in
d < N1/2. We hope our approach eventually will lead to a proof of this stronger
bound.
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