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Abstract--The ability to "hide" one bit in 
trapdoor functions has recently gained much in- 
terest in cryptography research, and is of great 
importance in many transactions protocols. In 
this paper we study the cryptographic security 
of RSA bits. In particular, we show that  unless 
the cryptanalyst can completely break the RSA 
encryption, any heuristic he uses to determine the 
least significant bit of the cleartext must have an 
error probability greater than ~ - - e .  A similar 
result is shown for Rabin's encryption scheme. 

1. Introduction 
Clarifying the relationship between the cryp- 

tographic security and computational complexity 
of cryptosystems is one of the most important  
goals of current cryptographic research. The main 
difficulty seems to be the subtle interaction be- 
tween information-theoretic and complexity-theo- 
retic arguments, which is hard to quantify. Even 
if the decryption of cyphertexts is proved to be al- 
most everywhere difficult, the cryptosystem may 
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b e  useless in practice if the cryptanalyst can 
easily derive useful information about the clear- 
texts without actually computing them. This in- 
formation can be in the form of particular clear- 
text  bits, some functions of these bits, or just a 
non-uniform probability distribution on candidate 
cleartexts that  can make exhaustive search more 
efficient. Even a single cleartext bit can be use- 
ful if the cryptanalyst knows that  the cleartext is 
either a "yes" or a "no" answer to some question. 
As to a concrete example, consider the problem 
of factoring a number N which is the product of 
two large primes p and q. It is probably a difficult 
computational task for almost all such N,  but if 
the least significant decimal digit of N is 3, it is 
easy to deduce that  the least significant digits of p 
and q are 1 and 3, or 7 and 9. A small amount  of 
information about the factors is thus easy to ob- 
tain, and the nature of the tradeoff between the 
information and complexity aspects of such prob-' 
lems is far from being understood. 

One of the first a t tempts  to analyze this ques- 
tion is described in Goldwasser and Micali [2]. In 
this innovative paper, they describe a new ran- 
domized public key cryptosystem in which each 
cleartext bit is encrypted separately. This in- 
dependence enables them to prove that  unless 
the problem of determining quadratic residuosity 
modulo a composite number is easy (a purely 
complexity-theoretic question), the cryptanalyst 
can not get any deterministic or statistical infor- 
mation about the cleartext bits. Their main ob- 
servation is tha t  any "magic box" that  can guess 
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cleartext bits with 1/2 + e probability of success 
can be transformed into a quadratic residuosity 
"magic box" by analyzing the answers to a large 
number of independent random queries which are 
related to-the same cleartext bit. However, the 
new cryptosystem they propose seems to be only 
of theoretical value: In spite of its high security, 
it is unlikely to be used in practice since it is ex- 
tremely slow and it expands each cleartext bit into 
a ciphertext block which is hundreds of bits long. 

In another recent work, Blum and Micati [1] 
showed that  the discrete exponentiation 'hides' a 
certain bit of its argument in a very strong sense, 
and used this to generate sequences of pseudo ran- 
dom bits. 

In this paper we analyze the cryptographic 
security of the RSA cryptosystem, which is one 
of the best known public key cryptosystems (see 
Rivest, Shamir and Adelman [7]). It trans- 
poses a block of cleartext bits into a block of 
ciphertext bits of the same length, and thus 
it lacks the independence property which is 
crucial in Goldwasser and Micali's proof tech- 
nique. Recently, Goldwasser, Micali and Tong [3] 
showed that  an oracle which determines the leas t  
significant bit of the cleartext from RSA cypher- 
texts can be used to break the RSA cryptosystem. 
Their result remains valid even if the oracle is al- 
lowed to make some errors, but the error probabil- 
ity allowed is small and tends to 0 as the message 
size tends to infinity. 

Here, using novel arguments, we greatly im- 
prove this result. Let  0 be any one of the follow- 
ing oracles 
(0i)  For any interval I of non-negligible length 

(e < ~  < 1 --  e) determine for any cypher- 
text E(x) 1 whether x 6 I. 

(Ok) Given E(x), determine the k-th binary hit of 

(0i.)Given E(x), guess the least significant bit of 
z with an error probability less than ¼ --  e. 

*E(z) = z' (rood N), where N is the product of two large 
prime, ~ d  god(e, ~(N)) = 1. 

We show that 0 can be transformed into a poly- 
nomial time algorithm for decrypting RSA cipher- 
texts. Thus the cryptana]yst cannot gain the par- 
tial information given by 0 without  completely 
breaking the RSA cryptosystem. This seems to be 
the first time tha t  such a strong result, is proved 
about a practical cryptosystem, and it, greatly en- 
hances our belief in tile cryptographic security of 
the system. 

We apply similar arguments for the Rabin 
public-key scheme (see Rabin [6]) to get the same 
result concerning the oracle 0L. This result is of 
special interest since Rabin's scheme is known to 
be equivalent to factoring. 

The next section deals with the interval oracle 
Ol, section 3 with OL, and section 4 with Ok. 
Section 5 discusses 0L for Rabin 's  scheme, and 
section 6 contains some concluding remarks. 

2. The interval Oracle 

Let I _C ZN be an interval with e < ~ < 
1 -  e for some non-negligible e > 0, and let O; be 
the oracle that  on input E(x) determines whether 
x 6 I. In this section we prove that  such an oracle 
can be used to invert the RSA encryption function 
in random polynomial time. We first prove this 
results for a special type of intervals. 

Theorem 1. Let I --'-- [0, t] with e < t <_ N/2 .  
There is a random polynomial time algorithm using 
the oracle Oi that reverts the encryption function 
E(x). 
Proof. Given E(z) we want to find x. Having 
E(x), we can compute E(ix (mod N)) for all i, 
using the multiplicative structure of the RSA: 

ECix) = ECi)E(x ) (mod N). 

When i ranges from 1 to N so does ix (mod N),  
thus for a random i, ix 6 1 with probability ~ > 
e. (Here, and throughout  the paper we assume 
tha t  z is relatively prime to N.  If gcd(x, N) ~ 1 
then gcd(E(z),N) ~ 1, so we can factor/v and 
find the decryption key.) 
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We now find a random b ---- ix (rood N)  6 I.  This 
can be done by picking a random i, comput ing  
E(ix),  and querying the oracle 0i  with t he  input  
E(iz) .  This is repeated until an i with b = ix 6 I 

is found. In a similar way we find another  random 
c = j x  6 I. Note tha t  the values of l a n d  j are 
known, though x is unknown. 

Generally, knowing E(b) ,E(c ) i s  not enough to 
compute  E(b ± c). However, since b = ix, c -" j x  

and i , j  are known, E ( b + c ) =  E ( i ~ j ) E ( x ) .  This 
can be used to determine whether  c < b or b < c 
since 

b < c i f f  c - - b E  I .  

Using this ordering we can implement  the 
Euclidean greatest common divisor algori thm to 
compute  gcd(b,c). Suppose b < c. By perform- 
ing a binary search on k, we determine the maxi- 

• mal k such tha t  kb < e. This way we can divide 
c - - ~ k b + r ,  with 0 ~ r < b, and r - - c - - k b - - - -  

( j -  ki)x 6 I. Now substi tute c ~- b and b *- r, 
and continue with Euclid's g.c.d, a lgori thm until 
we find E(d) where d ----- gcd(b,c), and a repre- 
sentat ion d ---- lx (rood N),  where l is known. 
If b and c were relatively prime then d - -  1, so 
E(d) = 1. If this occurs then x --~ 1-1 (mod N).  
Since the  probability tha t  b and c will be rela- 
tively prime is ~ ~-~, repeating this procedure will 
recover x in random polynomial time.II 

To prove the next  theorem, about  general in- 
tervals, we first introduce the method  of "modified 
binary god" which will play a central role 
th roughou t  this paper. To find the gcd of two 
integers, b and c, most  s tandard algori thms re- 
quire tests of the form 'is b < c?' Unlike the 
special case of theorem 1, the other  oracles will 
not  enable us to perform such comparisons. We 
modify the original binary gcd (see [4, Vol. II, p. 
321]) to avoid comparisons. The essence of our 
a lgori thm is tha t  if ]b I and lel are both even, then  
gcd(b,c) 2 gcd(~, ~), if Ib[ is even and ]c I is odd, 
then gcd(b, c) ----gcd(~, c), while if both Ibl and Icl 
are odd then gcd(b, c ) - -  g c d ( ~  --~, b_~). Further-  
more, in the last case, one of ~-~,  ~ is divisible 

again by 2. The  following algori thm finds the gcd " 
of two integers 'up to powers of 2'. 

Modified binary gcd algori thm: 

(Initialize) on input  b, c, repeat  b *-- ~ c ~ :~ until 
b, c are odd. 

b+c b_~_¢. (Loop) c ~ - T - ,  b ~- El iminate  powers of 2 
until left with odd numbers.  

(Terminate) when either b -~ 1 , - - 1 , 0  or c ---- 
I,--I,0. 

It is a simple mat te r  to verify tha t  after at  
most  two passes over the loop, max(In[, [b[) is 
reduced by at  least a ~ factor. Hence only poly- 
nomially many i terations are needed. 

Theorem 2. Let I be any interval with e < 

< i - - e ,  for some non negligible e > O. 
There is a random polynomial time algorithm using 

the oracle 01 that inverts the encryption function 

E(x) .  

Proof. W i t h o u t  loss of generality, II] < ~ ,  
. (otherwise replace I by its complement) .  Using 

Ox, pick a random i such tha t  ao ---- ix (mod N)  6 
I.  Pick random j , k  with j x  + ao, kx  + ao 6 I.  
Denote b - -  j x ,  c = kx. With probability ~, a0 
is in the middle two quadrants  of I, and Ibl, Icl < 
I~[ We intend to run the modified binary gcd --47. 
a lgori thm to find gcd([bl, tc]) (expressed in te rms 
of Ix, as in the previous theorem). To do tha t ,  
we use Oi to distinguish even Ib['s from odd once 
inside [ - ~ ,  ~ ]  in the following way: 
If b 6 [-~--~,l-~] and Ib] is even, then ~ 6 
[ - - ~ ,  !~]. On the other hand,  if Ibl is odd, then  
b , , ,  6 [-~ - -  -~-, -~ + Therefore under the  as- 
sumpt ions  on a0, b and c, and the fact tha t  [I[ 
N T ,  we have: 

If Ibl is even then a0 + ~ 6  I .  
If Ibl is odd then a0 + ~ ~ I.  

b+cl 
Note tha t  since i -  T -  ,]b-72-~ I < max(lbl,]c]) , 

the new values for b, e will satisfy a0 + b, a0 + 
c 6 I as well as the previous bounds on their  
size. Therefore we can continue the  i teration in 
the  modified binary gcd algorithm. If the num- 
ber of i terations performed exceeds the bound 
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21og4/,~ N,  we abort and start with a new triple 
a, b, c. Every trial has probability ~ ~ of yielding 
1 (which enables inverting x), so the whole process 
is in random polynomial time. II 

Corollary. For every non trivial interval I, 
the cryptanalyst cannot determine whether x 6 I 
without completely breaking this RSA encryption. 

Definition: Let I ,  J be two diQoint intervals in 
ZN. Let 0 be a 0 - -  1 oracle (with input  E(x)). 
We say that  0 distinguishes between I and J if 
for every x 6 I, y 6 J O(E(x)) ~ O(E(y)). We 
say that I,  J are opposite if I = J -I- -~. 

Lemma 3. Let I and J be opposite disjoint 
intervals of non-negligible length, and 0 a n  oracle 
distinguishing 1 from J. Then 0 can be used to 
break this RSA encryption in random polynomial 
t ime. 

Proof. Use the same construction of theorem 2. l  

Corollary 4.. For almost all moduli N,  the most 
significant bit of RSA cleartezt cannot be deter- 
mined from the ciphertezt. 

Proof. If N is not very close to a power of 2, then 
the  x's in ZN with most significant bit 1 determine 
an interval of non negligible length. Our claim 
then follows from lemma 3. | 

A similar argument shows that  for any N,  the 
other log log N most significant cleartext bits can- 
not  be determined unless the cryptanalyst can 
completely break the  RSA encryption modulo N.  

3. Least significant RSA bit 

The main result in this section is the following 
theorem. 

Theorem 5. Let 0£ be an oracle that, on input 
E(x), can guess the least significant bit of z, such 
that for a random x the probability that 01. will err 
is at most ~ --  e (for some non-negligible e > 0). 
Then there is a random polynomial time algorithm, 
using 01., that breaks this RSA encryption. 

Proof. Let x 6 ZN, define 

~top i f -~  < z <  N 
HalfN(x) I . .  

(bo t tom otherwise 
Note that  the least significant bit of z is 0 if 
and only if HalfN(2--rx)  : bottom. Hence 
any oracle O1- for the least significant bit can be 
transformed to an Hal fN oracle, 0n (and vice 
versa). Our goal is proving that  any oracle 0n 
which, given the encryption of x, E(x), can guess 
HalfN(x) with 3/4 _Jr e probability of success (for 
some non-negligible e > 0), can be used to break 
this RSA encryption in random polynomial time. 

Define x -~ y if ga l fN(x )  = HalfN(y).  
Notice that  if z is very small then for almost all 
i, i ---- i q- z, while if x ~ -~ then for almost all 
i,i i+z. 
Fact 1: Let A(x) ---- 2[~ - -  ½[. Then for random 
i , j  

A(x) = Pr(i =_ i q- x) 

A(x) = Pr( jx  ---- (j ~t_ 1)x). 

% 

L~ 

Figure i: The function A(z) 
This fact enables us to manipulate the H a l f N  
oracle into one which can distinguish x's which are 
very close to 0 from x's very close to ~ .  This will 
suffice to perform a modified binary gcd algorithm 
which, in turn, can be used to invert E(z). 

Fact 2: Let Sz = {jlO~ guesses correctly on j x }  N 
{jlO~ guesses correctly on (j-I-1)x}. Then IS=I _> 
N(½ + 
Proof: Recall that  0~ guesses correctly on at least 
N(~ -[- e) elements, and use the principle of inclu- 
sion and exclusion.1 

Denote a(x) = I{jlJz - (J + l)x} r'IS=l 
N 

Fact 8: For every x, la(x)- ACz) I  ½ - 2E.  
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Let  s(x) be an approximat ion to a(x), gained by 
sampling,  i.e. by picking various independent  j ' s  
and counting for how many  of those Ou gives 
the  same answer to E( j z ) ,E ( ( j  + 1)z). By the 
weak law of large numbers,  polynomially many (in 
e - - l , l o g N )  sampling points are enough to have 
I s ( x ) -  a(x)l < e with overwhelming probability 

1 (e.g. Pr > 1 log-X-~N). 

So, with overwhelming probability, for every x, 
we have 

I s ( x ) -  A(x)[ < Is(x) -  (x)l + la(x) - -  ACx)l 
1 

< - - - e .  
- -  2 

Let  Ie -~- [ - - -~ , - -~ ]  and let J~ -~- N + Ic. We 
get 

x 6 I ~  ~ A(x) > 1 - - ~  ~ ~(x) > ½ 
x6 54 ~ A(x) <_ ~ ~ s(x) < ½. 
So by comparing the  sample s(x) to ½ we have a 
very reliable evidence to either x ~ I~ or z ~ J~. 
The  crucial point about  the interval Ie Is tha t  if 
x 6 I~ then  

X x 
Ix[ even ~ 5 e I e ,  Ixl odd ~ ~ 6 J , .  

This makes the distinction between even and odd 
possible inside I~ and this is all we need. 

Description of inversion algori thm: 
Given E(x), pick random i , j  and compute  
E(ix) ,Z( jx) .  Continue until i , j  both satisfy 
s(ix), s(jx) > ½. (otherwise ix ~_ IE or j x  ~ I,). 

(Initialize) Set b ~- ix, c ~- jx .  While s(2-1b)  > 
1 do b *-- 2 -1b  (and similarly for c). 

(Loop) b ~ ~-~, c ~ ~-~ (Addi t ion/subt rac t ion  
is done as in the gcd algori thm of section 2): 
El iminate  factors of 2 from both b, c - if more  than  
log 2 N "factors" are found, abort  and return to 
the  start ing point. 

(Termination) If loop is done more than 2 log4/3 N 
t i m e s -  abort and return to starting point. If 
b = 0 or c = 0 return to the  starting point. If 
either b = 1 , - -1  or c ----- 1 , - -1  use the gathered 
coefficients to represent 1 = l.x, where l is known. 

Recover x ----- l --1 (rood N),  and verify it by ap- 
plying E to the resulting value. 

Analysis: The last clause makes sure the algo- 
r i thm never errs. To see tha t  it is in random poly- 
nomial time, observe the following: With prob- 
ability ~ e 2, the initial choices are in I,.  Hence 
with probability > 6~2 thcy are also relatively _ -~- 
prime. In this case, the a lgor i thm proceeds with 
overwhelming probability of success wi thout  one 
single error. | 

Remark  6: The results of this section remain 
t rue  if we replace the O~ oracle by an oracle 0z 
with the same error probability, for any interval I 
of length N/2 ,  since the relation x ----z Y, defined 
as x 6 I ~ y 6 I,  gives rise to the same function 
A(x) .  

Corollary 7: The second bit of the RSA has the 
same security as the first bit. 

Proof. Distinguish between two cases regard- 
ing the modulus  N .  

1. N = 4k-4- 3. In this case the second bit of x 
is 0 iff x/4 is in bo t tom half. 

o 

% 
Figure 2: Quadrants  for ~ vs. two least 

significant bits of x, N = 4k + 3. 

2. N - -  4k-~- 1. In this case the second bit of x 
is 0 iff x/4 has small 'absolute value' (i.e. - - -~  < 

o 

Figure 3: Quadrants  for ~ vs. two least 
significant bits of x, N - -  4k + 1. 
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So in both cases, determining second bit is equiv- 
a len t  to determining an interval of length N/2 ,  
and hence cannot be done with error probability 
smaller thafi ~ -- e. | 

4. Other RSA bits 
In this section we show that  not only the least 

significant RSA bit (and second bit), but almost 
all other bits are secure. The proof of this fact is 
based on the following reduction: 

Let Ok be an oracle which, given E(x), deter- 
mines the k-th bit of x. Represent N ---- r2 k -I- m 
with Iml < 2 k-x .  Define 

Ox(E(x)) = Ok(E(r--lx)). 

We first show that  Ol (almost always) distin- 
guishes between two opposite intervals of non- 
negligible length, thus, by lemma 3, settling the 
deterministic question. Then we show that  Or can 
be viewed as an oracle for an appropriate interval 
I of length N and the error introduced by this -y, 
reduction is almost always substantially smaller 
than ¼. This result, combined with remark 6, will 
prove the stronger result that  almost all the bits 
cannot be guessed without a noticeable error. 

We give here a detailed description of the case 
m > 0. The case m < 0 can be treated similarly. 

For N = r2 k -]- m, 0 < m < 2 k-1. Denote 

G t = { x l I N  <_x < ( l + r l ) N  } 

for l = 0 , . . . ,  r - -  1 (Gt's are a partition of [0, N - -  
1] to disjoint intervals). 

Lemma 8:/f x E Gt then the k-th bit of x is 1 
i f frx (mod N) 6 [r2 k-1 -- lm, r2 k -- lm) .  

Proof. Follows from the fact that  for every 0 _< 
l_< r - - l , [ 1 2 k q  - 2  k - l , ( l + l ) 2  k]_C GL. | 

Figure 4 describes the range of x -+ rx (mod N) 
as a function of the Gt's. Each Gt gets sent to a 
sequence of points, spaced in distances of r apart. 
Denote 

= l r 2 k - ' , r 2  k - - ( r - -  

J1 = ( - -m,  r2 k-1 - - ( r - -  1)m) 

then fill = r(2 k-1  - -  m) + m and !i -{- ~ -- J*. 

, i :  . ..: 

J 1 | ' 

Figure 4: The function x --+ rx 

Lemma 9. Oi distinguishes I1 from J1. 

Proof. B y  lemma 8, if x E I1 then the k-th bit 
of r - i x  is 1, so Ox(E(x)) = Ok(E(r--lx)) --" 1. 

Similarly, if y 6 51 then ¢I(E(y)) --- O. II 

Theorem 10. (a).For almost all IV, an oracle 
Ok for the k-th bit, 1 _< k < log N ,  can be used to 
break the RSA in random polynomial time. 
(b). For every N, for almost all k, 1 _< k < log N ,  
the oracle Ok can be used to break the RSA in 
random polynomial time 

Proof. Represent N ----- r2 k q- m. Let  0 < 6 < 1 
such that  m < (1--6)2 k - l ,  then Iill - -  r(2 k - l -  
m) Jr- m > r2 k -1  • 6 -4- m > N~.  So for every 
fixed 6, if m satisfies this bound, then Oi separates 
opposite intervals of non-negligible length. To 
complete the proof, it suffices to notice that  for a 
given 6, the following holds: For every N almost 
all k's are such tha t  m < 2k--l(1 --6), and for 
almost all N ' s  every k has this property. | 

The result of theorem 10 settles the question of 
k-th bit immunity against attacks with no errors. 
In order to deal with Ok which do err, we extend 
I1 to an interval I of length exactly -~, by defining 

I -- [r2 k-1 rm m k rrn 3m 
- T + 7 , r  9. - T + T  I. 

Interpreting 0~'s answer  as membership in this 
interval I,  we show that  0x does not err too fre- 
quently. 

Lemma l l .Le t  N -~- r2 k -~- rn, where Ira[ < 
2 k-1. The total number of errors, e, done by Oz, 

satisfies e < ~ -F r .  
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The proof of this lemma is based on bounding 
the number  of points tha t  can fall into the  shaded 
area in figure 4. This number  is proport ional  to 
the size of this area (the q,~l term) plus at most  --r-  

r boundary points. 

As a consequence, we conclude tha t  if 

2r 5)2 k - I  2 
Iml < 2r + - - - - 7  (1 - 

t h e n  the error probability due to the reduction 
0k --* O~ is bounded by lq_A. If k _< log N - -  

1 . Therefore log log N - -  1, then ~ > 1 2 log N 
if we restrict ourselves to all except few 'upper '  
bits we know tha t  if Iml < 2k--1(1 - - 6 ) - -  2, 
then the error probability due t o , t h e  reduction 
is bounded by !q_4 -5 I This te rm can be ~ .  
rather  close to ~ for some k's, but  if this happens 
it will guarantee tha t  the error size for consecutive 
bits is small. For example, if m4 >_ 24-1(1 - -  
~), then mk--1 < 2k--2(1 - -  ½). Hence the error 
probability introduced by our reduction cannot  
exceed I~ for both 0 4 - 1  and 04. 

Theorem 12. For every moduli N and every k, 
3 _< k < l o g N - - l o g l o g N - - 1 ,  either 04 or 0k--1 
with error probability not exceeding 1/16 - -  e, can 
be used to break the RSA in random polynomial 
time. 

The results of this section show tha t  almost  all 
single RSA bits are secure. This does not  neces- 
sarily imply tha t  the  cryptanalyst  cannot  deter- 
mine, given E(x), whether  the third bit of x is the  
same as the seventh bit  or not. We can extend our 
results, using the novel techniques introduced by 
Long and Widgerson [5], to show tha t  the  crypt- 
analyst  cannot  determine wi thout  error any non- 
constant  Boolean function of a fixed number  of 
least significant bits. 

Theorem 13. Le t  B(- . . )  be a non-constant  
Boolean function of k0 Boolean variables. An 
oracle Os which, on input  E(x) ,  determines  
B(x4o, . . . ,  xl) (x,'s are the  k0 least significant bits 
of x), can be used to break t he  RSA in random 
polynomial  time. 

Proof. As shown in [5], B has a period of length 
2 k (k _< k0). The  t ransformat ion x --* 2 - 4 x  
gives 2 k intervals (of length ~ each) where B 
is constant.  Fur thermore,  there are at  least two 
opposite intervals I,  J (I  ---- J -5 -~), such t ha t  
B gets different values on I, J .  So by lemma 3, 
OB can be used to invert this RSA encryption in 
random polynomial time. | 

5. The Rabin Scheme 
Let  N ---- p . q  where p,q are primes, p - -  

q ------ 3 (mod 4) and p ~ q (mod 3). Under  these 
conditions one can define an invertible one-to-one 
encryption funct ion E from 

~ - { x l x  < \ N  & ( N ) _ 1 }  M 
- -  2 

to the set 

Q - - { y l 3 x  y----x 2 ( m o d N ) }  

by Z(x) = x 2. Rabin  [6] has shown tha t  inverting 
this function is polynomial ly  equivalent to factor- 
ing N.  The special conditions on p,q guarantee 
tha t  (iN)---- ( -~)- - - -  1 and (N ~ )  ---- - -1 .  Define 

__ ~top if N / 4  < x < N / 2  
Ha l fg /2 (x )  [ b o t t o m  otherwise 

As in section 3, an oracle for Hal /N /2  is equiv- 
alent to an oracle for the least significant bit  of 
X. 

Theorem 14. Let 01. be an oracle that on input 
E(x) can guess the least significant bit of x, such 
that/or a random x the probability that OL will err 
is at most ¼ - -  e (/or some non-negligible e > 0). 
Then there is a random polynomial time algorithm, 

using O I., that/actors N .  

Proof. The  algori thm uses the same reduction 
idea of theorem 3, however some modification are 
required to cope with the fact t h a t  the messag e 
space is not  closed under  addi t ion /subt rac t ion .  
We encounter  two main difficulties: 
(1) In performing our binary gcd algorithm, even 

if b = ix, c --- j x  are both in M ,  b 4- c might  
be outside M .  
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To overcome this, notice that  d £ M ¢~ 3d 6 
M,  and multiplication by 3 moves the intervals of 
length ~ around 0 and ~- to intervals of length e 
around 0 and -~ respectively. Thus to test ix for 
i ~ M we can test 3ix. 

Remark: Since ( 2 )  = 1, division by 2 causes no 
problems. 

(2) When computing s(x) by sampling pairs 
jx, (j-51)x, having j 6 M does not guarantee 
that  j + 1 6 M.  

We could sample only pairs for which both j 6 M 
and j -5 1 6 M, but  this would force us to allow 
the error probability of O~ to be only ~ - -  e. To 
prove our claim we must spread our sampling over 
the entire message space. Denote B = 64e - a ,  

?N 7/ = (~)3, and let I = [ - - ~ s  N, 2B] and J = I - 5  
N Multiplication by any odd k, Ikl < B, maps -ft. 
the intervals I and J into the intervals of length 
N~  around 0 and N/2  respectively. Thus we can 
try to distinguish between the opposite intervals 
I and J by comparing jx  and (j + k)x, for any 
small odd k such tha t  both j and j -5 k are in M.  

Given E(x) we do the following test: Pick a ran- 
dom odd k, Ikl < B, and a random j 6 M such 
tha t  (J+--~) ---- 1 and apply the oracle 0~ to E(jx) 
and E((j -5 k)x). 

We claim that  if x 6 I then the probabil- 
ity that  the oracle will give the same answer is 
greater than ½ -5 ~, while if x 6 J the answers 
will be different with probability greater than ½ -5 
~. Proving this claim will finish the proof of the 
theorem, since then we know that  repeating this 
test (polynomially many times) will enable us to 
distinguish between the intervals I and J (with 
error probability < 1/ log 3 N),  and by lemma 3, 
this will enable us to invert E(x). 

Let x 6 1 (the case x 6 J is treated similarly), 
and let k be an odd integer, Ikl < B. Define the 
following 0-1 random variables on M:  

Xk(m) = 1 iff (x(m_-5 k).) ._ 1. 
" N 

( x ( ~ -  k)) 
Zk(m) - -  1 iff - -  1. 

e 

Y(m) = 1 iff O~ is correct on E(xm). 

Yk(m) ----- 1 iff 0.~ is correct on E(x(m -5 k)). 

Lemma 15. Let N = pq, where p > q > 2B, 
then for all k, Z, 0 < Ikl, Ill < B, 
(a) The expectation of Xk, Exp(Xk) -- ½ -4= rl -5 
O(q-~). 
(b) Exp(Zk) -= ½ ± 77 + O(q-1). 
(c) Exp(XkXl) = ¼ 4- r] Jr- O(q -1) for k 7 ~ l, and 
similarly for Exp(ZkZl). 
(d) Exp(Y) > ~ + e. 
(e) Exp(YklXk) = EzP(YlZk). 
(f) 

1 ° 3 I-~ ~ Exp(YIXk)--ExP(Y)I < ~e 
Ikl<B 
k o d d O  

and similarly for Zk. 

Proof. (a)I f  x 6 M then ( ~ )  ---- ( - ~ ) ,  so 
let R be the number of m, 0 _< m < N,  such tha t  
( ~ )  ---- ( -~-~)  ~-- 1 and let 

1 N - '  m 1 (re+k))  
Q= ~ E(I-5(~))( -5 A r 

-%=0 

then I Q -  a l  < {(p + q) < p. Now 

m(m -5 k). Since ~'~ra(~) - -  0 

1 ~-~(f(m)~ 
4~ . ,~  N , 

w% 

p - - 1  q - - 1  

< ¼,.2° 

___ 
'1/, ,o 

1 
< --. 
--4 

The last inequality follows because the sum of a 
character over a finite field on a non square degree 

Denote f(m) = 
we have 

N 
IQ-7-1 __ 
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2 polynomial is :[::1, (see [8]). Thus I~ --  ½1 < }. 
Since the value of ' the Jacobi symbol modulo N 
is symmetric around -~, and the error introduced 
by adding kx is less than 7, this proves our claim. 

(b) By the same argument as in (a). 

(c) Again let R be the number of m such that 
( ~ )  = (~N---~) "-" (~N--~)= 1 and let 

N - - 1  
1 1 m 1 m + k  1 m + l  

q = ~  E (  + ( ~ ) ) (  + ( ~ ) ) ( + ( ~ ) )  

then I Q -  RI ( ~(P + q) < P- Denote f (m) - -  
m(m + k)(m + l) then by the same argument as 
in (a) 

N - - 1  

IQ - - / I  _< (3 + l  ( )1) 
m,--~-O 
p - -1  q- -1  

I( f(uq)))( f(vp) I <_ + E E ) 
1,=0 P v=0 q 

By the deep results of A. Weil [8] we have 

IQ-~I < ~ ( 3 +  (2p--½).(2q--½)) < p 
8 - -  

w h i c h  proves our claim. 
(c) By the inclusion exclusion principle. 
(d) Because the error probability of 0~ is less than 

(e) Immediate from the definitions. 
(f) Let S -- -~ ~'~kZk then by (a) Exp(S) = ½ "4- 
% and by (b) the Xk are pairwise independent so 
we can bound the variance of S, V(S) <_ 2-Te 3. 
Thus by Chebyshev's inequality 

1 e E P(IS- ~1 > -~) < §. 
Now 

1 E E x p ( Y I X ~ )  -" 1 E 2Exp(YXk) 
k k 

= 2Exp(YS) 
b u t  

I e e 1 3 
Exp(YS) < (~-}--~)Exp(Y)-~--~ <_ ~Exp(Y)-]--~ 

a n d  

Thus ]2Exp(YS) Exp(Y)] < ~e. 

Thus if z 6 I the probability that the oracle will 
be correct on both queries is given by 

1 ~ E~p(rr~lX~) 
k 

1 E(Exp(Y iXk  ) + Exp(YkiXk)_ 1) >-B 
k 

1 1 E p(YlZk)- 1 >-- -~ E Exp(YIXk) + -~ 
k k 

3 1 e _> 2 E ( Y ) -  ~e-- 1 > ~ -F- 

and this proves our claim. | 

Let us demonstrate our results by discussing 
the question of how many messages are needed in 
order to hide one bit, using Rabin's encryption, 
such that an adversary cannot have more than 
1 percent advantage in guessing this bit (unless 
he can factor N). Using the wiretap techniques 
( see Yao [9] ), 6 messages ( l o g g  bits long) are 
enough. Previous bounds (Goldwasser, Micali and 
Tong [3]) would require at least 3 log N messages. 

6. D i s c u s s i o n  

The strong bit security of the RSA and Rabin 
schemes is a double edged sword. On one side, it 
strongly enhances our belief in the cryptographic 
security of these systems. On the other hand, it 
means that the (potentially easier) task of reveal- 
ing one bit is sufficient to crack the system al- 
together. This risk is emphasized in the pyesence 
of cryptographic protocols, which might leak one 
bit through communication. These mutual con- 
nections between complexity, information and 
protocols will undoubtedly play a central role in 
future cryptography research. 
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